北京大学:《高级编译技术 Advanced Compiler Techniques》课程教学资源(PPT课件讲稿)Introduction to Optimizations

School of EECS, Peking University Advanced Compiler Techniques"(Fall 2011) Introduction to Optimizations Guo yao
School of EECS, Peking University “Advanced Compiler Techniques” (Fall 2011) Introduction to Optimizations Guo, Yao

Outline Optimization rules Basic blocks Control Flow Graph(CFG) a Loops a Local Optimizations Peephole optimization Fa|2011 Advanced Compiler techniques
2 Fall 2011 “Advanced Compiler Techniques” Outline ◼ Optimization Rules ◼ Basic Blocks ◼ Control Flow Graph (CFG) ◼ Loops ◼ Local Optimizations ◼ Peephole optimization

Levels of Optimizations ■Loca a inside a basic block Global (intraprocedural) Across basic blocks Whole procedure analysis Interprocedural Across procedures Whole program analysis Fa|2011 Advanced Compiler techniques
3 Fall 2011 “Advanced Compiler Techniques” Levels of Optimizations ◼ Local ◼ inside a basic block ◼ Global (intraprocedural) ◼ Across basic blocks ◼ Whole procedure analysis ◼ Interprocedural ◼ Across procedures ◼ Whole program analysis

The Golden Rules of optimization Premature Optimization is Evil a Donald Knuth, premature optimization is the root of al∥evi Optimization can introduce new, subtle bugs Optimization usually makes code harder to understand and maintain Get your code right first, then, if really needed, optimize计t Document optimizations carefully a Keep the non-optimized version handy, or even as a comment in your code Fa|2011 Advanced Compiler techniques
4 Fall 2011 “Advanced Compiler Techniques” The Golden Rules of Optimization Premature Optimization is Evil ◼ Donald Knuth, premature optimization is the root of all evil ◼ Optimization can introduce new, subtle bugs ◼ Optimization usually makes code harder to understand and maintain ◼ Get your code right first, then, if really needed, optimize it ◼ Document optimizations carefully ◼ Keep the non-optimized version handy, or even as a comment in your code

The Golden Rules of optimization The 80/20 Rule In general, 80% percent of a program's execution time is spent executing 20% of the code 90°%/10°% for performance- hungry programs Spend your time optimizing the important 10/20% of your program Optimize the common case even at the cost of making the uncommon case slower Fa|2011 Advanced Compiler techniques
5 Fall 2011 “Advanced Compiler Techniques” The Golden Rules of Optimization The 80/20 Rule ◼ In general, 80% percent of a program’s execution time is spent executing 20% of the code ◼ 90%/10% for performance-hungry programs ◼ Spend your time optimizing the important 10/20% of your program ◼ Optimize the common case even at the cost of making the uncommon case slower

The Golden Rules of optimization Good Algorithms Rule a The best and most important way of optimizing a program is using good algorithms E.g. O(n*log)rather than O(n2) However we still need lower level optimization to get more of our programs a In addition, asymptotic complexity is not always an appropriate metric of efficiency a Hidden constant may be misleading E.g. a linear time algorithm than runs in 100*n+100 time is slower than a cubic time algorithm than runs in n3+10 time if the problem size is small Fa|2011 Advanced Compiler Techniques
6 Fall 2011 “Advanced Compiler Techniques” The Golden Rules of Optimization Good Algorithms Rule ◼ The best and most important way of optimizing a program is using good algorithms ◼ E.g. O(n*log) rather than O(n2 ) ◼ However, we still need lower level optimization to get more of our programs ◼ In addition, asymptotic complexity is not always an appropriate metric of efficiency ◼ Hidden constant may be misleading ◼ E.g. a linear time algorithm than runs in 100*n+100 time is slower than a cubic time algorithm than runs in n 3+10 time if the problem size is small

Asymptotic Complexity Hidden Constants Hidden Contants 3000 2500 2000 100n+100 1500 n’nn+10 1000 500 0 0 5 10 15 Problem size Fa|2011 Advanced Compiler Techniques 7
7 Fall 2011 “Advanced Compiler Techniques” Asymptotic Complexity Hidden Constants Hidden Contants 0 500 1000 1500 2000 2500 3000 0 5 10 15 Problem Size Execution Time 100*n+100 n*n*n+10

General Optimization Techniques Strength reduction Use the fastest version of an operation ■Eg instead of instead of Common sub expression elimination Eliminate redundant calculations ■Eg double x=d大(1im/max)大sx; double y=d *(lim max)*sy double depth =d (lim/ max double x= depth大sx; double depth Fa|2011 Advanced Compiler Techniques 8
8 Fall 2011 “Advanced Compiler Techniques” General Optimization Techniques ◼ Strength reduction ◼ Use the fastest version of an operation ◼ E.g. x >> 2 instead of x / 4 x << 1 instead of x * 2 ◼ Common sub expression elimination ◼ Eliminate redundant calculations ◼ E.g. double x = d * (lim / max) * sx; double y = d * (lim / max) * sy; double depth = d * (lim / max); double x = depth * sx; double y = depth * sy;

General Optimization Techniques Code motion Invariant expressions should be executed only once E.g for (int 0; 1< xlength; 1++) x[i] * Math PI Math Cos( double picosy= Math. PI Math cos(y) for (int i=0; i<x length; i++) 区[i]*= piCOs Fa|2011 Advanced Compiler techniques
9 Fall 2011 “Advanced Compiler Techniques” General Optimization Techniques ◼ Code motion ◼ Invariant expressions should be executed only once ◼ E.g. for (int i = 0; i < x.length; i++) x[i] *= Math.PI * Math.cos(y); double picosy = Math.PI * Math.cos(y); for (int i = 0; i < x.length; i++) x[i] *= picosy;

General Optimization Techniques Loop unrolling The overhead of the loop control code can be reduced by executing more than one iteration in the body of the loop. E. g double picosy Math. PI Math cos (y)i for(int 0; i< x length i++) 1 piCOs double picosy Math PI Math cos(y) for (int i =0;i length; i + 2)t x[i]大= piCOS A efficient“+1” In array x[i+1]大= piCOs; indexing is required Fa|2011 Advanced Compiler techniques
10 Fall 2011 “Advanced Compiler Techniques” General Optimization Techniques ◼ Loop unrolling ◼ The overhead of the loop control code can be reduced by executing more than one iteration in the body of the loop. E.g. double picosy = Math.PI * Math.cos(y); for (int i = 0; i < x.length; i++) x[i] *= picosy; double picosy = Math.PI * Math.cos(y); for (int i = 0; i < x.length; i += 2) { x[i] *= picosy; x[i+1] *= picosy; } A efficient “+1” in array indexing is required
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 南京大学:《编译原理》课程教学资源(PPT课件讲稿)第四章 语法分析(戴新宇).pptx
- 《计算机组装与维修》课程教学资源(PPT课件讲稿)第十三章 局域网维护及常见故障处理.ppt
- 北京大学:《软件需求工程》课程教学资源(PPT课件讲稿)第十章 软件需求开发与管理工具.ppt
- 中国科学技术大学:《网络信息安全 NETWORK SECURITY》课程教学资源(PPT课件讲稿)第二章 数据加密技术基础.ppt
- 《汇编语言》课程教学资源(PPT课件讲稿)第6章 子程序.ppt
- 中国科学技术大学:《计算机体系结构》课程教学资源(PPT课件讲稿)MSI、MESI、分布式共享存储器体系结构、Models of Memory Consistency.pptx
- 《数据库系统概论》课程教学资源(PPT课件讲稿)第六章 数据库设计.ppt
- 电子科技大学:《汇编语言程序设计》课程教学资源(PPT课件)第一章 基础知识(主讲:詹瑾瑜).ppt
- 进程(PPT课件讲稿)Processes.pptx
- 《大学计算机基础》课程教学资源(PPT课件讲稿)第四章 Excel 2007电子表格.ppt
- 东南大学:《C++语言程序设计》课程教学资源(PPT课件讲稿)Chapter 11 Operator Overloading; String and Array Objects(主讲:东方).ppt
- 《计算机网络》课程实验教学大纲.pdf
- 广西医科大学:《计算机网络 Computer Networking》课程教学资源(PPT课件讲稿)Chapter 18 NETWORK DESIGN AND IMPLEMENTATION.pptx
- 《多媒体技术基础》课程教学资源(PPT课件讲稿)单元1 多媒体概述.ppt
- 中国科学技术大学:《并行算法实践》课程教学资源(PPT课件讲稿)上篇 并行程序设计导论 单元I 并行程序设计基础 第三章 并行程序设计简介.ppt
- 《计算机控制技术》课程教学资源(PPT课件讲稿)第二章 模拟量输出通道.ppt
- 哈尔滨工业大学:开放式中文实体关系抽取研究(导师:秦兵).pptx
- 兰州大学:《SOA & Web Service》教学资源(PPT课件讲稿)Lecture 5 Web Service Program(苏伟).ppt
- 中国科学技术大学:《高级操作系统 Advanced Operating System》课程教学资源(PPT课件讲稿)第四章 分布式进程和处理机管理(主讲:熊焰).ppt
- 香港浸会大学:《网络管理 Network Management》课程教学资源(PPT课件讲稿)Chapter 02 Network Management Model.ppt
- 香港大学:Data Analysis - Factors Potentially Affecting Development.pptx
- 西安电子科技大学:《操作系统 Operating Systems》课程教学资源(PPT课件讲稿)Chapter 06 文件系统 File Systems(主讲:高海昌).ppt
- 南京大学:《自然语言处理 Natural Language Processing(NLP)》课程教学资源(PPT课件讲稿)自然语言处理概述、基于规则(知识工程)的传统自然语言处理方法(理性方法).ppt
- 香港科技大学:片上网络(PPT讲稿)network-on-chip(NoC)NoC Building Blocks.pptx
- 《数据结构》课程教学资源(PPT课件讲稿)第五章 数组.ppt
- 语义网与本体(PPT讲稿)Semantic Web & Ontology(元数据 Metadata).ppt
- 软件开发环境与工具(PPT讲稿)Software development environment and tool.ppt
- 哈尔滨工业大学:逻辑斯蒂回归与最大熵(PPT课件讲稿).pptx
- 《机器学习》教学资源(PPT讲稿)支持向量机 support vector machines.ppt
- 中国科学技术大学:《计算机视觉》课程教学资源(PPT课件讲稿)第二章 视觉的基本知识.ppt
- 《编译原理》课程教学资源(PPT课件讲稿)第二章 词法分析.ppt
- 《计算机网络》课程教学资源(PPT课件)第4讲 以太网组网及故障排除.ppt
- VB.Net程序设计基础(PPT课件讲稿).ppt
- 《计算机导论》课程教学资源(PPT课件讲稿)第9章 计算机学科方法论.ppt
- 厦门大学:《大数据技术原理与应用》课程教学资源(PPT课件讲稿,2017)第11章 图计算.ppt
- 《Visual Basic 6.0程序设计》课程教学资源(PPT课件)第四章 常用控件与窗体.ppt
- 大连工业大学:《计算机程序设计(C语言版)》课程教学资源(PPT课件讲稿,共十三章).pps
- 《高级语言程序设计》课程教学资源(试卷习题)试题五(无答案).doc
- 《计算机文化基础》课程教学大纲 Computer Culture Foundation.pdf
- 《图像处理与计算机视觉 Image Processing and Computer Vision》课程教学资源(PPT课件讲稿)Chapter 08 Stereo vision.pptx