活性反应核与代谢网络的可塑性(PPT讲稿)The activity reaction core and plasticity of metabolic networks

The activity reaction core and plasticity of metabolic networks Almaas e. oltvai z N.& barabasi A-L 01/04/2006
The activity reaction core and plasticity of metabolic networks Almaas E., Oltvai Z.N. & Barabasi A.-L. 01/04/2006

The idea To examine the utilization and relative flux rates of each metabolic reaction in a wide range of simulated environmental conditions 30,000 randomly and uniformly chosen optimal growth conditions(randomly assigning values for metabolic-uptake reactions and all single-carbon-source minimal medium conditions sufficient for growth Using fba on in silico models H pylori ■E.cOl ■S. cerevisiae
The idea ◼ To examine the utilization and relative flux rates of each metabolic reaction in a wide range of simulated environmental conditions ◼ 30,000 randomly and uniformly chosen optimal growth conditions (randomly assigning values for metabolic-uptake reactions) ◼ and all single-carbon-source minimal medium conditions sufficient for growth ◼ Using FBA on in silico models: ◼ H. pylori ◼ E. coli ◼ S. cerevisiae

Observations ■ Flux plastici Changes in the fluxes of already active reactions when the organism is shifted from one growth condition to another a Structural plasticity Changes in the active reaction set
Observations ◼ Flux plasticity ◼ Changes in the fluxes of already active reactions when the organism is shifted from one growth condition to another ◼ Structural plasticity ◼ Changes in the active reaction set

Metabolic core Definition The set of reactions that are active under all conditions Metabolic cores in different organisms H. pylori:138of381(36.200) ■E.coi:90of758(11.900 S cerevisiae: 33 of 1172(2.8%o) a Property The reactions in the metabolic core form a single connected cluster
Metabolic core ◼ Definition ◼ The set of reactions that are active under all conditions ◼ Metabolic cores in different organisms: ◼ H. pylori: 138 of 381 (36.2%) ◼ E. coli: 90 of 758 (11.9%) ◼ S. cerevisiae: 33 of 1172 (2.8%) ◼ Property ◼ The reactions in the metabolic core form a single connected cluster

The metabolic core of e. coli 3DDAH7P T3P2 E4P UDPNAM 13DPG DHSK ALA 2PG ESP MDA 3PSME 4PPNCYSH DALA CHOR UNPTDO 4PPNTE ADCHOR DPCOA COA )Ey AHTD PNAG O6R PSP UDPGG2A ACA 2) A6RPSP THE C140ACP C120ACP C141ACP C160ACP C161ACP C181ACI A6RP6P2 UoPg23a A6RP DISAC1P PEP PGP RIBFLV KPo CMPKDO K2LIPIV CDPETN LPS GLYCOGEN ADPGLC GIP UDPG AOPHEP NAD NMN一PP1 UTP UDP METTHE OTHIO TTHE RTHIO NADPH GMP CoP DTTP一 DTDp OTMI
The metabolic core of E. coli

Essentiality of reactions in metabolic core Two types of reactions in metabolic core Reactions that are essential for growth under all conditions H. pylori: no data in the paper E. coli: 81 out of 90 n Experimental data: 747o of the enzymes that catalyze core metabolic reactions are essential, compared with a 19.6%o lethality fraction of the noncore enzymes S cerevisiae: all 33 Experimental data: 84%o of the core enzymes are essential, whereas 15.6%o of noncore enzymes are essential Reactions that are required for optimal metabolic performance a When assuming a 10%o reduction in the growth rate the size of the metabolic core becomes 83 in E. coli
Essentiality of reactions in metabolic core ◼ Two types of reactions in metabolic core ◼ Reactions that are essential for growth under all conditions ◼ H. pylori: no data in the paper ◼ E. coli: 81 out of 90 ◼ Experimental data: 74.7% of the enzymes that catalyze core metabolic reactions are essential, compared with a 19.6% lethality fraction of the noncore enzymes. ◼ S. cerevisiae: all 33 ◼ Experimental data: 84% of the core enzymes are essential, whereas 15.6% of noncore enzymes are essential. ◼ Reactions that are required for optimal metabolic performance ◼ When assuming a 10% reduction in the growth rate, the size of the metabolic core becomes 83 in E. coli

Size of the metabolic cores s Metabolic cores in different organisms H pylori: 36.2%o E. coli: 11.90o S cerevisiae: 2.8%0 ■ Explanation Little flexibility for biomass production in H pylori 61°0 of the e pylori reactions are active on average Higher metabolic flexibility in E. coli and S. cerevisiae On average, 35.3%o and 19.7%o of the reactions are required in E. coli and s cerevisiae,respectively. Alternative pathways: 20 out of the 51 biomass constituents in E coli are not produced by the core The more reactions a metabolic network possesses, the stronger is the network-induced redundancy, and the smaller is the core
Size of the metabolic cores ◼ Metabolic cores in different organisms: ◼ H. pylori: 36.2% ◼ E. coli: 11.9% ◼ S. cerevisiae: 2.8% ◼ Explanation ◼ Little flexibility for biomass production in H. pylori ◼ 61% of the H. pylori reactions are active on average. ◼ Higher metabolic flexibility in E. coli and S. cerevisiae ◼ On average, 35.3% and 19.7% of the reactions are required in E. coli and S. cerevisiae, respectively. ◼ Alternative pathways: 20 out of the 51 biomass constituents in E. coli are not produced by the core. ◼ The more reactions a metabolic network possesses, the stronger is the network-induced redundancy, and the smaller is the core

Conservation of the metabolic core The average core enzyme in E coli H. pylori has orthologs in 71.7%o of the 32 reference bacteria. While the noncore enzymes have an 55 evolutionary retention of only 47.70 This difference is not a simple 63 consequence of the high-lethality fraction of the core enzymes 18 Random selection of 90 enzymes with a 74. 7o lethality ratio has an average evolutionary retetion of E. coli s, cerevisiae Maintaining the core s integrity is a collective need of the organism
Conservation of the metabolic core ◼ The average core enzyme in E. coli has orthologs in 71.7% of the 32 reference bacteria. While the noncore enzymes have an evolutionary retention of only 47.7%. ◼ This difference is not a simple consequence of the high-lethality fraction of the core enzymes. ◼ Random selection of 90 enzymes with a 74.7% lethality ratio has an average evolutionary retetion of only 63.4% Maintaining the core’s integrity is a collective need of the organism

Regulatory control on metabolic core ■ mrna half-live Average half-life for the core enzymes: 14.0 min Average half-life for the noncore enzymes: 10.5 min Activating and repressive regulatory links Extended core: a set of 234 reactions that are active in more than 90%o of the 30,000 simulated growth conditions Core enzyme-encoding operons: 52.3%o repressive, 35. 7%o activating; and 10%o dual interactions Noncore enzyme-encoding operons: 45%o repressive; 45%o activating, and 10%o dual interactions Synchronization ■ Flux correlation mRNA expression correlation All data are of e. coli
Regulatory control on metabolic core ◼ mRNA half-lives ◼ Average half-life for the core enzymes: 14.0 min ◼ Average half-life for the noncore enzymes: 10.5 min ◼ Activating and repressive regulatory links ◼ Extended core: a set of 234 reactions that are active in more than 90% of the 30,000 simulated growth conditions ◼ Core enzyme-encoding operons: 52.3% repressive; 35.7% activating; and 10% dual interactions ◼ Noncore enzyme-encoding operons: 45% repressive; 45% activating; and 10% dual interactions ◼ Synchronization ◼ Flux correlation ◼ mRNA expression correlation All data are of E. coli

Practical implications I The core enzvmes may prove effective antibiotic targets a Currently used antibiotics Fosfomycin and cycloserine inhibit cell-wall peptidoglycan Sulfonamides and trimethoprim inhibit tetrahydrofolte biosvnthesis a Both pathways are present in H. pylori and E coli
Practical implications ◼ The core enzymes may prove effective antibiotic targets. ◼ Currently used antibiotics: ◼ Fosfomycin and cycloserine inhibit cell-wall peptidoglycan. ◼ Sulfonamides and trimethoprim inhibit tetrahydrofolte biosynthesis. ◼ Both pathways are present in H. pylori and E. coli
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 细胞的基本结构(PPT讲稿)细胞膜——系统的边界.ppt
- 江苏大学:综合性实验(PPT讲稿)多克隆抗体制备、单克隆抗体的制备、酶标抗体的制备.ppt
- 《生物信息学》课程教学资源(PPT讲稿)生物信息学数据库(数据库介绍与数据检索).ppt
- 杭州电子科技大学:《生物信息学》课程教学资源(PPT课件)从人类基因组计划(HGP)说起 Introduction to Bioinformatics.ppt
- 杭州电子科技大学:《生物信息学》课程教学资源(PPT课件)生物信息学及其发展历史(代琦).ppt
- 《生物信息学》课程PPT教学课件:药物生物信息学(序列比对).ppt
- 原生动物门(PPT讲稿)Protozoa.ppt
- 《高分子传感材料》课程PPT讲稿:监测蛋白质(Monitoring proteins)、生物传感器与生物芯片(Biosensors and biochips).ppt
- 球菌 Coccus:化脓性球菌的放大:疾病和发病机制 Zooming in pyogenic coccus:disease and pathogenesis.ppt
- 浙江大学:《作物学》课程教学资源(PPT讲稿)烟草基因组中NBS类抗性基因的分析.ppt
- 浙江大学生物信息实验室:多序列比对和系统进化分析——以镰刀形贫血症为例.pptx
- 浙江大学:中国糯玉米蜡质基因位点受到人工选择的分子证据 Molecular evidence for domestication selection in the waxy locus of Chinese waxy maize.ppt
- 浙江大学生命科学学院博士学位论文答辩:水稻基因组的进化选择模式研究.pptx
- 浙江大学博士学位论文答辩:水稻小RNA的基因组分布和分子进化研究.pptx
- 《环境工程微生物学》化学工程与工艺类本科生课程教学大纲.doc
- 中国科学院大学:《植物生理学》课程教学考试大纲.doc
- 中国科学院大学:《植物生理学》课程教学考试大纲.doc
- 中国科学院大学:《植物生理学》课程教学考试大纲.doc
- 《微生物学》第十章 微生物的分类.ppt
- 四川农业大学:《生物统计附试验设计》课程教学资源(PPT课件讲稿)第8章 直线回归与相关.ppt
- 山东大学:《生物信息学》课程教学资源(PPT课件讲稿)蛋白质三维结构预测(主讲:魏天迪).ppt
- 《生理学》课程教学资源(考试大纲).doc
- 清华大学:以信息系统的观点了解基因组(李衍达).ppt
- 实验:细胞膜的通透性.pps
- 《细胞生物学》课程PPT教学课件:第三章 细胞的基本结构(细胞膜——系统的边界).ppt
- 四川大学生命科学学院生物科学基地班:绿色荧光蛋白在大肠杆菌中的克隆表达.ppt
- 四川大学:纳米级微电极快速核酸检测鉴定病原微生物.pptx
- 《生物化学与分子生物学》课程教学资源(PPT讲稿)蛋白质的分子组成.pps
- 丽江师范高等专科学校:《遗传学》课程教学资源(PPT课件)第六章 染色体结构变异(王石华).ppt
- 国家自然科学基金委员会:生命科学发展趋势、优先发展领域与资助思考(杜生明).ppt
- 《普通生物学》课程教学资源(PPT课件讲稿)第四章 孟德尔遗传定律 Mendel’s principles.ppt
- 《生物化学与分子生物学》课程教学资源(PPT讲稿)氨基酸代谢 Amino Acid Metabolism(蛋白质的营养作用).pps
- 《遗传学》课程教学资源(PPT课件讲稿)第三章 遗传的分子基础 第一节 染色体的化学组成和分子结构.ppt
- 郑州大学:蚊子的生命循环(PPT讲稿)Life Cycle of a Mosquito.ppt
- 不分体节的真体腔动物:软体动物门(PPT讲稿)Mollusca.ppt
- 《医学微生物学》课程教学资源(PPT课件讲稿)动物源性细菌.ppt
- 《分子生物学》课程考试大纲.doc
- 《生物化学与分子生物学》课程教学资源(PPT讲稿)翻译后加工 posttranslational processing.ppt
- 《生命伦理学》课程PPT教学课件(讲稿)第五讲 生命与伦理.ppt
- 《植物生物学》课程教学资源(实验PPT讲稿)实验四 真菌和地衣.ppt