《线性代数》第一章 行列式(1.1.1.4)二阶与三阶行列式、行列式的性质、行列式按任一行(列)展开、克莱姆法则

行列式 第一节二阶与三阶行列式 、二阶行列式的引入 三、三阶行列式 三、小结思考题

牛第一节m阶行列式 一、二阶、三阶行列式 用消元法解二元线性方程组 a1x1+a2x2=b1, a21x1+a2x2=b2·(2) (1)xa2:a12x1+a1242x2=b42, (2)an2:+a11=b 两式相减消去x2,得 上页
用消元法解二元线性方程组 + = + = . , 21 1 22 2 2 11 1 12 2 1 a x a x b a x a x b (1) (2) (1) : a22 , a11a22 x1 + a12a22 x2 = b1a22 (2) : a12 , a12a21x1 + a12a22 x2 = b2a12 两式相减消去 x2,得 一、二阶、三阶行列式 第一节n阶行列式

(a14a2-a12a2)x1=b1a2-a1b2; 类似地,消去x1,得 (a1a2-a12a2)x2=a1b2-b421, 当a1a2-a12a21≠0时,方程组的解为 x,=22-122,x,= 1b2-b1a21 (3) 22 1221 1122 2 21 由方程组的四个系数确定 上页
; (a11a22 − a12a21)x1 = b1a22 − a12b2 类似地,消去x1,得 , (a11a22 − a12a21)x2 = a11b2 − b1a21 当 a11a22 − a12a21 0时, 方程组的解为 , 11 22 12 21 1 22 12 2 1 a a a a b a a b x − − = . (3) 11 22 12 21 11 2 1 21 2 a a a a a b b a x − − = 由方程组的四个系数确定

定义由四个数排成二行二列(横排称行、竖排 称列) 1 1u12 21u22 (4) 表达式a1a2-a12a21称为二阶 C 行列式,并记作 12 22 即 D=n02=a、7a12a2 121 21L 22 上页
由四个数排成二行二列(横排称行、竖排 称列) (4) 21 22 11 12 a a a a 定义 2 1 2 2 1 1 1 2 1 1 2 2 1 2 2 1 a a a a a a a a 行列式,并记作 表达式 − 称为二阶 即 . 11 22 12 21 21 22 11 12 a a a a a a a a D = = −

二阶行列式的计算—对角线法则 主对角线 12 =a12-12421 副对角线a12 auk +auk,=b1, 对于二元线性方程组 a2k1+a24x2=b2 c若记 D= 12 系数行列式 21 22 上页
11 a 12 a a12 a22 主对角线 副对角线 对角线法则 = a11a22 . − a12a21 二阶行列式的计算 若记 , 21 22 11 12 a a a a D = + = + = . , 21 1 22 2 2 11 1 12 2 1 a x a x b a x a x b 对于二元线性方程组 系数行列式

a11*+a122=bu 211+a22x2 D 11a 12 2 上
+ = + = . , 21 1 22 2 2 11 1 12 2 1 a x a x b a x a x b , 21 22 11 12 a a a a D =

a21x1+a2x2=b2 D I1 21X1+a2 D
+ = + = . , 21 1 22 2 2 11 1 12 2 1 a x a x b a x a x b , 2 22 1 12 1 b a b a D = + = + = . , 21 1 22 2 2 11 1 12 2 1 a x a x b a x a x b , 21 22 11 12 a a a a D =

11+a12x a21x1+a2x2=b2 D1 12 = 22 I1 11 +12x2 211+a 22 D,=ll 21 上
+ = + = . , 21 1 22 2 2 11 1 12 2 1 a x a x b a x a x b , 2 22 1 12 1 b a b a D = + = + = . , 21 1 22 2 2 11 1 12 2 1 a x a x b a x a x b . 21 2 11 1 2 a b a b D =

则二元线性方程组的解为 b a12 a. b D, b 22 D x,=-2= 21 D11 a12 D a11 12 21 22 21 22 注意分母都为原方程组的系数行列式 上页
则二元线性方程组的解为 , 21 22 11 12 2 22 1 12 1 1 a a a a b a b a D D x = = 注意 分母都为原方程组的系数行列式. . 21 22 11 12 21 2 11 1 2 2 a a a a a b a b D D x = =

例1求解二元线性方程组 3x1-2x2=12 2x1+x2=1 解 3-2 D=2 =3-(-4)=7≠0, 11=14,D,=3 D、12 2 2 =-21, 21 D114 D =2,12=s-21 3. D7 D 7 上页
例 1 + = − = 2 1. 3 2 12, 1 2 1 2 x x x x 求解二元线性方程组 解 2 1 3 − 2 D = = 3 − ( − 4 ) = 7 0 , 1 1 12 2 1 − D = = 14 , 2 1 3 12 D 2 = = −21 , DD x 1 1 = 2 , 7 14 = = DD x 2 2 = 3. 7 21 = − − =
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《线性代数》第四章 向量组的线性相关性(4.1.4.2)线性方程组有解的判定条件、线性方程组的解法.ppt
- 《线性代数》第四章 向量组的线性相关性(4.3)向量组的秩.ppt
- 《线性代数》第三章 向量组的线性相关性(3.2)向量组的线性相关性.ppt
- 《线性代数》第三章 向量组的线性相关性(3.1)n维向量的概念.ppt
- 《线性代数》第二章 矩终及其运算(2.5)矩阵分块法.ppt
- 《线性代数》第二章 矩终及其运算(2.4)矩阵的秩与初等变换.ppt
- 《线性代数》第二章 矩终及其运算(2.3)矩阵的运算.ppt
- 《线性代数》第二章 矩终及其运算(2.2)矩阵的运算.ppt
- 《线性代数》第二章 矩终及其运算(2.1)矩阵.ppt
- 复旦大学:《数学分析》经典教材的课后习题答案.pdf
- 《实分析与复分析》课程教学资源(参考文献)Ruidin著名数学教程(中文版,共二十章).pdf
- 《最优化问题数学基础》PPT教学课件.ppt
- 《微积分、线性代数》考研知识点解析:第5章 线性方程组.pdf
- 《微积分、线性代数》考研知识点解析:第4章 向量组的线性相关性.pdf
- 《微积分、线性代数》考研知识点解析:第3章 矩阵的初等变换与矩阵的秩.pdf
- 《微积分、线性代数》考研知识点解析:第2章 矩阵代数.pdf
- 《微积分、线性代数》考研知识点解析:第1章 行列式(水木艾迪).pdf
- 《微积分、线性代数》考研知识点解析:2008 年全国硕士研究生入学统一考试试题.pdf
- 《微积分、线性代数》考研知识点解析:第4章 微分学基本定理及应用.pdf
- 《微积分、线性代数》考研知识点解析:第5讲 微分学基本定理及应用2不定积分与原函数.pdf
- 《高等代数》课程教学资源(下)λ-矩阵测试题答案.doc
- 《高等代数》课程教学资源(下)欧氏空间测试题.doc
- 《高等代数》课程教学资源(下)线性变换答案.doc
- 《高等代数》课程教学资源(下)线性空间习题.doc
- 《数学软件选讲》ppt教学课件(共2篇).ppt
- 清华大学:《数学建模》课程教学资源(讲义)作业.ppt
- 清华大学:《数学建模》课程教学资源(讲义)1999年全国大学生数学建模竞赛C题(大专组)(姜启源).pdf
- 清华大学:《数学建模》课程教学资源(讲义)离散模型(冲量过程建模,姜启源).pdf
- 清华大学:《数学建模》课程教学资源(讲义)第五章 习题6 一室模型、快速静脉注射下给药方案设计(姜启源).pdf
- 清华大学:《数学建模》课程教学资源(讲义)第一章 建立数学模型(姜启源).pdf
- 清华大学:《数学建模》课程教学资源(讲义)第二章 初等模型(姜启源).pdf
- 清华大学:《数学建模》课程教学资源(讲义)第三章 量纲分析法建模(姜启源).pdf
- 清华大学:《数学建模》课程教学资源(讲义)第四章 静态优化模型(姜启源).pdf
- 清华大学:《数学建模》课程教学资源(讲义)第五章 动态模型(姜启源).pdf
- 清华大学:《数学建模》课程教学资源(讲义)第六章 稳态模型(姜启源).pdf
- 清华大学:《数学建模》课程教学资源(讲义)离散模型(差分方程建模,姜启源).pdf
- 清华大学:《数学建模》课程教学资源(讲义)离散模型(层次分析法建模,姜启源).pdf
- 清华大学:《数学建模》课程教学资源(讲义)第二章 习题(姜启源)problem1b.pdf
- 宁波大学科技学院:《复变函数与积分变换》课程教学资源(练习题)第三章 复变函数积分.doc
- 宁波大学科技学院:《复变函数与积分变换》课程教学资源(练习题)第二章 解析函数.doc