清华大学:《分子生物学》课程PPT教学课件(基因ene)第二十六章 信号的传输(Signal transduction)

Chapter 26 Signal transduction 清莘大当
Chapter 26 Signal transduction

26.1 Introduction 26.2 Carriers and channels form water soluble paths through the membrane 26.3 Ion channels are selective 26.4 Neurotransmitters control channel activity 26.5 G proteins may activate or inhibit target proteins 26.6 G proteins function by dissociation of the trimer 26.7 Growth factor receptors are protein kinases 26.8 Receptors are activated by dimerization 26.9 Receptor kinases activate signal transduction pathways 26.10 The Ras/MAPK pathway 26.11 The activation of Ras 26.12 Activating MAP kinase pathways 26.13 What determines specificity in signaling? 26.14 Cyclic AMP and activation of CREB 26.15 The JAK-STAT pathway 26.16 TGFb signals through Smads 26.17 Structural subunits can be messengers 情菜大当
26.1 Introduction 26.2 Carriers and channels form water soluble paths through the membrane 26.3 Ion channels are selective 26.4 Neurotransmitters control channel activity 26.5 G proteins may activate or inhibit target proteins 26.6 G proteins function by dissociation of the trimer 26.7 Growth factor receptors are protein kinases 26.8 Receptors are activated by dimerization 26.9 Receptor kinases activate signal transduction pathways 26.10 The Ras/MAPK pathway 26.11 The activation of Ras 26.12 Activating MAP kinase pathways 26.13 What determines specificity in signaling? 26.14 Cyclic AMP and activation of CREB 26.15 The JAK-STAT pathway 26.16 TGFb signals through Smads 26.17 Structural subunits can be messengers

26.1 Introduction Amplification refers to the production of additional copies of a chromosomal sequence,found as intrachromosomal or extrachromosomal DNA. Endocytosis is process by which proteins at the surface of the cell are internalized,being transported into the cell within membranous vesicles. G proteins are guanine nucleotide-binding proteins.Trimeric G proteins are associated with the plasma membrane.When bound by GDP the trimer remains intact and is inert.When the GDP is replaced by GTP,the a subunit is released from the bg dimer.Either the a monomer or the bg dimer then activates or represses a target protein.Monomeric G proteins are cytosolic and work on the same principle that the form bound to GDP is inactive,but the form bound to GTP is active. 清菜大当
Amplification refers to the production of additional copies of a chromosomal sequence, found as intrachromosomal or extrachromosomal DNA. Endocytosis is process by which proteins at the surface of the cell are internalized, being transported into the cell within membranous vesicles. G proteins are guanine nucleotide-binding proteins. Trimeric G proteins are associated with the plasma membrane. When bound by GDP the trimer remains intact and is inert. When the GDP is replaced by GTP, the a subunit is released from the bg dimer. Either the a monomer or the bg dimer then activates or represses a target protein. Monomeric G proteins are cytosolic and work on the same principle that the form bound to GDP is inactive, but the form bound to GTP is active. 26.1 Introduction

26.1 Introduction Receptor is a transmembrane protein,located in the plasma membrane,that binds a ligand in a domain on the extracellular side, and as a result has a change in activity of the cytoplasmic domain. (The same term is sometimes used also for the steroid receptors, which are transcription factors that are activated by binding ligands that are steroids or other small molecules.) Second messengers are small molecules that are generated when a signal transduction pathway is activated.The classic second messenger is cyclic AMP,which is generated when adenylate cyclase is activated by a G protein(when the G protein itself was activated by a transmembrane receptor). Signal transduction describes the process by which a receptor interacts with a ligand at the surface of the cell and then transmits a signal to trigger a pathway within the cell. 情華大当
Receptor is a transmembrane protein, located in the plasma membrane, that binds a ligand in a domain on the extracellular side, and as a result has a change in activity of the cytoplasmic domain. (The same term is sometimes used also for the steroid receptors, which are transcription factors that are activated by binding ligands that are steroids or other small molecules.) Second messengers are small molecules that are generated when a signal transduction pathway is activated. The classic second messenger is cyclic AMP, which is generated when adenylate cyclase is activated by a G protein (when the G protein itself was activated by a transmembrane receptor). Signal transduction describes the process by which a receptor interacts with a ligand at the surface of the cell and then transmits a signal to trigger a pathway within the cell. 26.1 Introduction

Movement of ligand Signal transduction EXTRACELLU儿AR 感2死 Ligand binds to receptor 26.1 Introduction Figure 26.1 Overview: information may be transmitted from the exterior to the interior of the cell by movement of a ligand or by signal CYTOSOL transduction. Ligand released Receptor interacts nto cytoplasm with cytosolic protein 清菜大当
Figure 26.1 Overview: information may be transmitted from the exterior to the interior of the cell by movement of a ligand or by signal transduction. 26.1 Introduction

26.1 Introduction Figure 26.2 Three means for transferring material of various sizes into the cell are provided by ion channels,receptor- mediated ligand lors enter through channel released transport,and receptor internalization. Coated vesicle is endocytosed 情華大当
Figure 26.2 Three means for transferring material of various sizes into the cell are provided by ion channels, receptormediated ligand transport, and receptor internalization. 26.1 Introduction

Act片gk6as色 26.1 Introduction Figure 26.3 A signal may be transduced by activating the kinase activity of the cytoplasmic domain of a transmembrane receptor 3906606066060668 or by dissociating a G protein into subunits that act on target proteins on Phosphorylated receptor G protein dissociates, the membrane associates with target protein actie subunit(s)act on target 清菜大当
Figure 26.3 A signal may be transduced by activating the kinase activity of the cytoplasmic domain of a transmembrane receptor or by dissociating a G protein into subunits that act on target proteins on the membrane. 26.1 Introduction

Camier Channel 26.2 Carriers and channels EXTRACELLULAR Solute binds Gate is form water soluble paths to carrier closed through the membrane CYTOSOL Figure 26.4 A carrier(porter) transports a solute into the cell by 82 a conformational change that EXTRACELLULAR brings the solute-binding site from the exterior to the interior,while an ion channel is controlled by the opening of a gate (which might in principle be located on either side Solute exposed Gate opens;ions of the membrane) to cytosol travel through CYTOSOL 情菜大当
Figure 26.4 A carrier (porter) transports a solute into the cell by a conformational change that brings the solute-binding site from the exterior to the interior, while an ion channel is controlled by the opening of a gate (which might in principle be located on either side of the membrane). 26.2 Carriers and channels form water soluble paths through the membrane

Camier Channel 26.2 Carriers and channels EXTRACELLULAR Solute binds Gate is form water soluble paths to carrier closed through the membrane CYTOSOL Figure 26.4 A carrier(porter) transports a solute into the cell by 8赞 a conformational change that EXTRACELLULAR brings the solute-binding site from the exterior to the interior,while an 6 ion channel is controlled by the opening of a gate (which might in principle be located on either side Solute exposed Gate opens;ions of the membrane). to cytosol travel through CYTOSOL 清菜大兰
Figure 26.4 A carrier (porter) transports a solute into the cell by a conformational change that brings the solute-binding site from the exterior to the interior, while an ion channel is controlled by the opening of a gate (which might in principle be located on either side of the membrane). 26.2 Carriers and channels form water soluble paths through the membrane

26.2 Carriers and channels form water soluble paths through the membrane Charged face of helix Hydrophobic face of helix Figure 26.5 A channel may be created by amphipathic helices,which present their hydrophobic faces to the lipid bilayer,while juxtaposing their charged faces away from the bilayer.In this example,the channel is lined with positive charges,which would encourage the passage of anions. 清菜大当
Figure 26.5 A channel may be created by amphipathic helices, which present their hydrophobic faces to the lipid bilayer, while juxtaposing their charged faces away from the bilayer. In this example, the channel is lined with positive charges, which would encourage the passage of anions. 26.2 Carriers and channels form water soluble paths through the membrane
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 清华大学:《分子生物学》课程PPT教学课件(基因ene)第二十五章 蛋白质间的开放交通(Protein trafficking).ppt
- 清华大学:《分子生物学》课程PPT教学课件(基因ene)第二十四章 免疫多样性(Immune diversity).ppt
- 清华大学:《分子生物学》课程PPT教学课件(基因ene)第二十三章 催化RNA(Catalytic RNA).ppt
- 清华大学:《分子生物学》课程PPT教学课件(基因ene)第二十二章 核的剪切(Nuclear splicing).ppt
- 清华大学:《分子生物学》课程PPT教学课件(基因ene)第二十一章 转录的调控(Regulation of Transcription).ppt
- 清华大学:《分子生物学》课程PPT教学课件(基因ene)第二十章 转录的起始(Initiation of transcription).ppt
- 清华大学:《分子生物学》课程PPT教学课件(基因ene)第十九章 核小体(Nucleosomes).ppt
- 清华大学:《分子生物学》课程PPT教学课件(基因ene)第十八章 染色体(Chromosomes).ppt
- 清华大学:《分子生物学》课程PPT教学课件(基因ene)第十七章 DNA的重新排列(Rearrangement of DNA).ppt
- 清华大学:《分子生物学》课程PPT教学课件(基因ene)第十六章 逆转录病毒和逆转座子(Retroviruses and retroposons).ppt
- 清华大学:《分子生物学》课程PPT教学课件(基因ene)第十五章 转座子(Transposons).ppt
- 清华大学:《分子生物学》课程PPT教学课件(基因ene)第十四章 重组和修复(Recombination and repair).ppt
- 清华大学:《分子生物学》课程PPT教学课件(基因ene)第十三章 DNA复制(DNA replication).ppt
- 清华大学:《分子生物学》课程PPT教学课件(基因ene)第十二章 复制子(The replicon).ppt
- 清华大学:《分子生物学》课程PPT教学课件(基因ene)第十一章 噬菌体的战略(Phage strategies).ppt
- 清华大学:《分子生物学》课程PPT教学课件(基因ene)第十章 操纵子(The operon).ppt
- 清华大学:《分子生物学》课程PPT教学课件(基因ene)第九章 转录(Transcription).ppt
- 清华大学:《分子生物学》课程PPT教学课件(基因ene)第八章 蛋白质定位(Protein localization).ppt
- 清华大学:《分子生物学》课程PPT教学课件(基因ene)第七章 遗传密码的利用(Using the genetic code).ppt
- 清华大学:《分子生物学》课程PPT教学课件(基因ene)第六章 蛋白质合成(Protein synthesis).ppt
- 清华大学:《分子生物学》课程PPT教学课件(基因ene)第二十七章 细胞循环和生长调控(Cell cycle and growth regulation).ppt
- 清华大学:《分子生物学》课程PPT教学课件(基因ene)第二十八章 致癌基因和癌症(Oncogenes and cancer).ppt
- 清华大学:《分子生物学》课程PPT教学课件(基因ene)第二十九章 梯度、级联和发信号的途径(Gradients, cascades, and signaling pathways).ppt
- 四川大学:《植物生物学》课程教学资源(教案讲义)第一章 植物的细胞和组织.pdf
- 四川大学:《植物生物学》课程教学资源(教案讲义)第二章 植物体的形态结构和发育.pdf
- 四川大学:《植物生物学》课程教学资源(教案讲义)第三章 植物的无机营养.pdf
- 四川大学:《植物生物学》课程教学资源(教案讲义)第四章 光合作用.pdf
- 四川大学:《植物生物学》课程教学资源(教案讲义)第五章 植物的繁殖.pdf
- 四川大学:《植物生物学》课程教学资源(教案讲义)第六章 植物的生长发育及其调控.pdf
- 四川大学:《植物生物学》课程教学资源(教案讲义)第七章 生物多样性和植物的分类及命名.pdf
- 四川大学:《植物生物学》课程教学资源(教案讲义)第八章 藻类植物.pdf
- 四川大学:《植物生物学》课程教学资源(教案讲义)第九章 苔藓植物.pdf
- 四川大学:《植物生物学》课程教学资源(教案讲义)第十章 蕨类植物.pdf
- 四川大学:《植物生物学》课程教学资源(教案讲义)第十一章 裸子植物.pdf
- 四川大学:《植物生物学》课程教学资源(教案讲义)第十二章 被子植物.pdf
- 《环境工程微生物学》课程教学资源(PPT课件)第一章 细菌结构与形态(1/2).ppt
- 《环境工程微生物学》课程教学资源(PPT课件)第一章 细菌结构与形态(2/2).ppt
- 《环境工程微生物学》课程教学资源(PPT课件)第二章 细菌的生理特性(1/5).ppt
- 《环境工程微生物学》课程教学资源(PPT课件)第二章 细菌的生理特性(2/5).ppt
- 《环境工程微生物学》课程教学资源(PPT课件)第二章 细菌的生理特性(3/5).ppt