同济大学:《高层建筑结构》课程教学资源(教案讲稿)Chapter 05 Structural Wall System(2/2)

Chapter 5 5.3 Capacity Calculation Structural Wall System 5.3.1 Flexural Capacity Calculation 5.1 Structural Wall System 5>5 5.4 Design of Structural Wall n Hai Tongji University, 5.3 Capacity Calculation 5.3.1 Flexural Capacity Calculation 5.3.1 Flexural Capacity Calculation Calculation Assumption: 4.The principlef themeRCcomn Large Eccentric Compression Large Eccentric Compression Calculation Sketch N=,6.x-nh-15 MM+M. 本课件版权归作者所有,仅供个人学习使用,请勿转载。1
1 Chapter 5 Structural Wall System 5.1 Structural Wall System 5.2 Structural Analysis 5.3 Capacity Calculation 5.4 Design of Structural Wall Xiong Haibei, Tongji University, 2015 5.3 Capacity Calculation 5.3.1 Flexural Capacity Calculation Large eccentric compression Small eccentric compression Large eccentric tension Small eccentric tension 1 b y s cu f 1 E b b w 0 s M h e a N 2 w 0 s M h e a N 2 β1 is a factor to adjust the compresion strength of concrete. If strength of concrete C80, β1=0.74 Linear interpolation for strength between C50 and C80. 5.3 Capacity Calculation 5.3.1 Flexural Capacity Calculation Large eccentric compression Small eccentric compression 1 b y s cu f 1 E b b β1 is a factor to adjust the compression strength of concrete. C80, β1=0.74; linear interpolation between C50 and C80. / 0 x h c c cu c f concrete A B’ B C D E y f Es Rebar 5.3.1 Flexural Capacity Calculation Calculation Assumption: 1. Plane section assumption; 2. Consider the contribution of vertical distributing reinforcements ; 3. To guarantee safety, the vertical distributing reinforcements in compressive region are not considered in calculation because they may buckle for their small diameter; 4. The principle of design is the same as RC column. Large Eccentric Compression Calculation Sketch ' ' ( .) ( )( ) ( ) ( ) sw 1 c w yw w0 w 0 yw sw w0 y s w0 s w0 yw sw w 0 w s y w0 s A N f b x f h 1 5x h f Ah x N M 1 1 fA h a 2 h fA MM M M M A fh a Establish the Equilibrium Equation: First, set the vertical distributing reinforcements to get Mw. And then calculate M0. Large Eccentric Compression α1 --- Ratio of the stress of compressive region and the strength of concrete The strength of concrete C80, α1=0.94 Linear interpolation for strength between C50 and C80. 本课件版权归作者所有,仅供个人学习使用,请勿转载

Small Eccentric Compression Small Eccentric Compression N■afAx+A,-a,A, Ne=a/h.s(h)+f,(h.-o) c=,+冬-d Large Eccentric Tension Large Eccentric Tension Calculation Sketch N=-ax+人是-l5国 w.4-之-网》 国上,速胜大物粒层国食力学为 5.3.2 Shear Resistance Calculation 5.3.2 Shear Resistance Calculation .Shear strength of eccentric compression: 1.No earthquako: ysa05h。+013w+冬 2.Earthquake: 北s是005A人,-01Bw+÷ z-0++0w+08 2.Earthquake:0.8/0.85 北≤n50点-0w+a8 本课件版权归作者所有,仅供个人学习使用,请勿转载。2
2 Calculation Sketch----Not consider the contribution of both the tensile and the compressive reinforcements, just like the analysis of small eccentric compressive column. Small Eccentric Compression ' ' ' ()( ) 1cw y s s s 1 c w w0 y s w0 s w 0 s 1 s y b 1 N fbx f A A x Ne f b x h f A h a 2 h ee a 2 f Establish equilibrium equation; Establish compatibility equation of deformation, because the stress of one side of the rebar does not yield. Small Eccentric Compression Calculation Sketch Large Eccentric Tension ' ' ( .) . / ( )( ) ( ) ( ) sw 1 c w yw w0 w0 yw sw sw 1 c w yw sw w0 yw yw sw w0 y s w0 s w0 yw sw w 0 w s y w0 s A N f b x f h 1 5x h fA N N x 0 A fb 15f A h f f Ah x N M 1 1 fA h a 2 h fA MM M M M A fh a Large Eccentric Tension 5.3.2 Shear Resistance Calculation Shear strength of eccentric compression: 1. No earthquake: 2. Earthquake: (. . ) . sw sh w t w w0 yh w0 1 A A V 05fb h 013N f h 0 5 A s [ (. . ) . ] . sw sh w t w w0 yh w0 RE 1 1 A A V 0 4 f b h 0 1N 0 8 f h 0 5 A s Shear strength of eccentric tension: 1. No earthquake: 2. Earthquake:*0.8/0.85 (. . ) . sw sh w t w w0 yh w0 1 A A V 05fb h 013N f h 0 5 A s [ (. . ) . ] . sw sh w t w w0 yh w0 RE 1 1 A A V 0 4 f b h 0 1N 0 8 f h 0 5 A s 5.3.2 Shear Resistance Calculation 本课件版权归作者所有,仅供个人学习使用,请勿转载

5.3.2 Shear Resistance Calculation 5.4 Design of Structural Wall V.=nV. .9 degree soismic design: Layout Vertical Layout Principle the imtegral lateral stiffmess.but not too d up in themec than 8m and th of-p Bottom Strengthening Region Limit of Axial-Load Ratio 1oth nt of shear wall, 50m 10 本课件版权归作者所有,仅供个人学习使用,请勿转载。3
3 Shear force of the wall’s strengthening region should be amplified--- “Strong-Shear-Weak-Bending” 1. no earthquake or shear wall Ⅳ: no adjustment 2. shear wall Ⅰ, Ⅱ, Ⅲ: * amplification coefficient 1.6、1.4、1.2 successively。 3. 9 degree seismic design: V V w vw w . wua w w M V 11 V M 5.3.2 Shear Resistance Calculation 5.4 Design of Structural Wall Plane layout Vertical layout Axial-load ratio Boundary element Strengthening region at the bottom Minimum ratio of reinforcement of wall Construction requirement of tie beam Layout Principle: Increase the integral lateral stiffness, but not too high; Try to make the stiffness center superpose upon the centroid to reduce eccentricity and avoid torsion; Avoid short-width wall; The length of wall should be shorter than 8m and the height-to-width should be lager than 2; Wall should be arranged in two ways along the main axis and the axis of wall should align to the axis of frame. It’s inappropriate to set the frame beam onto the tie beam. Vertical Layout Principle: The shear wall should be arranged continuously from bottom to top; Openings should be lined up in the same place. Irregular openings should be strengthened; Pay attention to the situation that the shear wall is set upon beams. These beams are frame-supported beams, so their seismic intensity should be upgraded. ; Try to avoid weak layer. The shear force of weak layer should multiply the amplification coefficient 1.15; The out-of-plane stiffness should be controlled. Bottom Strengthening Region Purpose: To ensure draw ability after plastic hinges appear in the shear walls, the strengthening region at the bottom should be reinforced. Principle: 1/8 of the total height of shear wall, When H>150m, 1/10 Or reinforce the two stories at the bottom Limit of Axial-Load Ratio principle: Increase wall’s ductility to make the shear walls at the bottom form plastic hinges when facing rare earthquake, avoiding brittle failure. Axial pressure N based on representative value of gravity load. (different from columns) Axial-load ratio Ⅰ(9 degree) Ⅱ(7,8 degree) Ⅱ N/fcA 0.4 0.5 0.6 本课件版权归作者所有,仅供个人学习使用,请勿转载

Boundary Member Confined Boundary Membe Restraining boundar nb .Constructing boundary membe irst stor Confined Boundary Member 学 omm (I) 。 Longitudina Ordinary boundary member Ordinary boundary member 质玉打郭力烟的狗态达蝶将外 本课件版权归作者所有,仅供个人学习使用,请勿转载。4
4 Boundary Member Restraining boundary member Constructing boundary member Principle Restraining boundary member:the ends of Ⅰ,Ⅱ shear wall’ bottom-strengthening region and the first story above; Constructing boundary member:the rest ends of Ⅰ,Ⅱ shear wall. The ends of Ⅲ,Ⅳ shear wall and non-seismic design wall. Confined Boundary Member Length of wall: lc Volume stirrup ratio: Characteristic value of stirrup: v Item Ⅰ(9 degree) Ⅰ(7,8 degree) Ⅱ v 0.20 0.20 0.20 lc (embedded column) 0.25hw 0.20hw 0.20hw lc (flanking column or column at the end of wall) 0.20hw 0.15hw 0.15hw c v v yv f f Diameter of stirrup: 8mm; Stirrup spacing value: 100mm(Ⅰ) 150mm(Ⅱ) Longitudinal reinforcement: range—shaded area A; Area—1.4%, 1.2%, 1.0%; ( special Ⅰ,Ⅰ,Ⅱ shear wall respectively ) Diameter: 616, 614; Confined Boundary Member 约束边缘构件 约束边 缘构 件截 面及 配筋 Ordinary boundary member Length of wall, minimum of stirrup, maximum stirrup spacing Ordinary boundary member 本课件版权归作者所有,仅供个人学习使用,请勿转载

Minimum Dimension of Shear Wall Minimum Dimension of Shear Wall 1.Nen-sismic: V.≤0.25Bfbh。 Shrar-span ratias?5 K50.15gA Distributing reinforcements 诗 nings should bo roir 200 Design of Coupling Beam Shear Capacity 1.non-seismic action Ks07iAw+人n section b d be adjusted of tle beams when 5≤六a2A+人 M≤f,A,(ho-a) 飞038h+09以n年如} 本课件版权归作者所有,仅供个人学习使用,请勿转载。5
5 Minimum Dimension of Shear Wall Strength of concrete ≥C20; Thickness of shear wall Seismic intensity region Embedded column Non-embedded column Ⅰ,Ⅱ Strengthening region at the bottom H/16 200 h/12 200 The rest H/20 160 h/15 180 Ⅲ, Ⅳ Strengthening region at the bottom H/20 160 H/20 160 The rest H/25 160 H/25 180 Nonseismic design all H/25 160 H/25 180 1. Non-seismic action: 2)Seismic action: Shear-span ratio>2.5: Shear-span ratio≤2.5: . V 0 25 f b h w c c w w0 (. ) w c c w w0 RE 1 V 0 20 f b h (. ) w c c w w0 RE 1 V 0 15 f b h c c w0 M V h Minimum Dimension of Shear Wall Distributing reinforcements Lateral and vertical reinforcement: sw sw w A b s Shear wall Seismic intensity Minimum ratio of reinforcement Maximum spacing value Minimum diameter Normal height Ⅰ, Ⅱ, Ⅲ 0.25% 300 8 Normal height Ⅳ, non-seismic design 0.20% 300 8 B height Special Ⅰ Strengthening region: 0.40% The rest: 0.35% 300 8 Temperature -stressincrease region Seismic and non-seismic 0.25% 200 —— Anchoring and overlapping of reinforcement of shear walls Process of openings Lapping length≥ 1.2laE ; Don’t lap on the same place; Spacing between lap joints ≥500mm; Openings should be reinforced. Design of Coupling Beam principle: Similar to the design of RC beam; According to the design of double-tendon section beam; Moment and shear force should be adjusted: Ideal elastic:6,7 degree: ×0.8, 8,9 degree: ×0.5, Not consider the function of tie beams when meeting rare earthquake. Flexure capacity: ' ( ) M y s b0 fA h a 1. non-seismic action: 2. seismic action: Span-to depth ratio>2.5: Span-to-depth ratio<=2.5: . sv w t b b0 yv b0 A V 07fbh f h s ( . ) sv b t b b0 yv b0 RE 1 A V 0 42 f b h f h s (. . ) sv b t b b0 yv b0 RE 1 A V 0 38 f b h 0 9 f h s Shear Capacity 本课件版权归作者所有,仅供个人学习使用,请勿转载

Design of Coupling Beam Design of Coupling Beam .Strong-shear-weak-bending on-selsmic action 2.sismic action: 5=n.5+S+ Shear-span ratio52.5: .Misa Short-length Shear Wall 本课件版权归作者所有,仅供个人学习使用,请勿转载。6
6 Minimum dimension: 1. non-seismic action: 2. seismic action: Shear-span ratio>2.5: Shear-span ratio≤2.5: . V 0 25 f b h w c c w w0 (. ) w c c w w0 RE 1 V 0 20 f b h (. ) w c c w w0 RE 1 V 0 15 f b h Design of Coupling Beam Strong-shear-weak-bending Ⅰ,Ⅱ,Ⅲ,Ⅳ seismic: 9 degree: l r b b b vb Gb n M M V V l . l r bua bua b Gb n M M V 11 V l Design of Coupling Beam Reinforcement of coupling beams Short-length Shear Wall Definition: ratio of length to thickness is 5 to 8; Advantages: Better ductility compare with normal wall Disadvantages: weaker in stiffness, and more drift than normal wall Solutions: Be careful in detail design The seismic rate is suggested to be higher, in order to make the wall with a sufficient ductility under rare earthquake, otherwise, it will be collapsed due to over large displacement The ratio of short-length wall is suggested lower than normal wall. If the short-length wall is without boundary columns, the ratio should be 0.1 lower further The shout-length wall is suggested to work with boundary columns and or Connor walls The design shear force should be modified by the factor 1.4 or 1.2 for rate 1 or 2, except at the bottom strengthening zone It is not allowed that all walls are short-length wall. Details of Shear Wall Colum Slab Beam Beam Colum Main reinforcement of the colum Stirrup Main reinforcement of the beam Longitudinal reinforcement of the wall horizontal reinforcement of the wall Strengthening rebar of the opening 本课件版权归作者所有,仅供个人学习使用,请勿转载
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 同济大学:《高层建筑结构》课程教学资源(教案讲稿)Chapter 05 Structural Wall System(1/2).pdf
- 同济大学:《高层建筑结构》课程教学资源(教案讲稿)Chapter 04 Frame Structures.pdf
- 同济大学:《高层建筑结构》课程教学资源(教案讲稿)Chapter 03-2 高层建筑的荷载作用及荷载效应组合.pdf
- 同济大学:《高层建筑结构》课程教学资源(教案讲稿)Chapter 03-1 Load Action and Load Combination of Tall Buildings.pdf
- 同济大学:《高层建筑结构》课程教学资源(教案讲稿)Chapter 02-2 Materials and Structural systems for Tall Buildings.pdf
- 同济大学:《高层建筑结构》课程教学资源(教案讲稿)Chapter 02-1 Materials Used in Tall Buildings.pdf
- 同济大学:《高层建筑结构》课程教学资源(教案讲稿)Chapter 01 Instruction to Tall Buildings(负责人:熊海贝).pdf
- 同济大学:《高层建筑结构》课程教学资源(参考资料)Shaking table Test Lab.pdf
- 同济大学:《高层建筑结构》课程教学资源(参考资料)SHAKING TABLE TEST LAB - MODEL TEST ON SHANGHAI WORLD FINANCIAL CENTER TOWER.pdf
- 同济大学:《高层建筑结构》课程教学资源(参考资料)Preliminary design of beams and columns.pdf
- 同济大学:《高层建筑结构》课程教学资源(参考资料)General earthquake design in Europe by Eurocode SFS-EN 1998-1.pdf
- 同济大学:《高层建筑结构》课程教学资源(参考资料)EARTHQUAKE DESIGN CODE IN SPAIN.pdf
- 同济大学:《高层建筑结构》课程教学资源(参考资料)A tall structure in our hometown.pdf
- 同济大学:《高层建筑结构》课程教学资源(参考资料)Tour First.pdf
- 同济大学:《高层建筑结构》课程教学资源(参考资料)Shanghai BOCOM Financial Towers.pdf
- 《高层建筑结构》课程教学资源(参考资料)中华人民共和国国家标准(GB 50009-2001)建筑结构荷载规范(英文版)Load Code for the Design of Building Structures.pdf
- 《高层建筑结构》课程教学资源(参考资料)中华人民共和国国家标准(GB 50011-2001)建筑抗震设计规范(英文版)Code for Seismic Design of Buildings.pdf
- 同济大学:《高层建筑结构》课程教学资源(参考资料)Shanghai World Financial Center.pdf
- 《高层建筑结构》课程教学资源(参考资料)中华人民共和国国家标准(GB 50010-2002)混凝土结构设计规范(英文版)Code for Design of Concrete Structures.pdf
- 同济大学:《高层建筑结构》课程教学资源(参考资料)上海世茂国际广场 Shimao International Plaza.pdf
- 同济大学:《高层建筑结构》课程教学资源(教案讲稿)Chapter 06 Dual System.pdf
- 同济大学:《高层建筑结构》课程教学资源(教案讲稿)Chapter 07 Tube System.pdf
- 《中德建筑比较》课程教学资源(文献资料)应对国际挑战,创建全英文建筑规划景观课程平台 Building the Platform of Courses Provided in English for Architecture, Planning and Landscape.pdf
- 《中德建筑比较》课程教学资源(文献资料)国外建筑——欧洲住宅建筑发展的八点趋势及其启示.pdf
- 《中德建筑比较》课程教学资源(文献资料)欧洲集合住宅的个性化设计.pdf
- 《中德建筑比较》课程教学资源(文献资料)柏林——上海住宅建筑发展比较研究(1949-2002)A Comparison of the Development of Housing in Berlin and Shanghai(1949-2002).pdf
- 《中德建筑比较》课程教学资源(文献资料)柏林国际建筑展览之都 Berlin,a City of International Building Exhibitions.pdf
- 同济大学:《中德建筑比较》课程教学资源(教案讲义)中德建筑的100个不同 100 Topics on the difference between Chinese and German architecture 1/4.pdf
- 同济大学:《中德建筑比较》课程教学资源(教案讲义)中德建筑的100个不同 100 Topics on the difference between Chinese and German architecture 2/4.pdf
- 同济大学:《中德建筑比较》课程教学资源(教案讲义)中德建筑的100个不同 100 Topics on the difference between Chinese and German architecture 3/4.pdf
- 同济大学:《中德建筑比较》课程教学资源(教案讲义)中德建筑的100个不同 100 Topics on the difference between Chinese and German architecture 4/4.pdf
- 吉林大学:《土木工程施工技术》课程电子教案(PPT课件)第一章 施工机械(负责人:赵大军).ppt
- 吉林大学:《土木工程施工技术》课程电子教案(PPT课件)第三章 基层(底基层)施工技术.ppt
- 吉林大学:《土木工程施工技术》课程电子教案(PPT课件)第二章 路基施工技术.ppt
- 吉林大学:《土木工程施工技术》课程电子教案(PPT课件)第五章 桥梁基础工程施工.ppt
- 吉林大学:《土木工程施工技术》课程电子教案(PPT课件)第四章 沥青路面施工技术.ppt
- 石河子大学:《砌体结构》课程教学资源(教案大纲)砌体结构 Masonry Structure.doc
- 石河子大学:《砌体结构》课程教学资源(教案大纲)2016-2017学年第二学期砌体结构教案.doc
- 石河子大学:《砌体结构》课程教学资源(论文)多样化教学在“水工钢筋混凝土结构”中的应用.pdf
- 石河子大学:《砌体结构》课程教学资源(论文)基于注册执业资格考试制度的土木工程专业课程体系改革.pdf