中国高校课件下载中心 》 教学资源 》 大学文库

《汽车理论》课程教学课件(英文讲稿)第6章 汽车平顺性 Ride Performance 6.3 Simplify of Automobile Vibration System and Vibration of Single Mass System(汽车振动系统的简化及单质量系统的振动)

文档信息
资源类别:文库
文档格式:PDF
文档页数:40
文件大小:885.74KB
团购合买:点击进入团购
内容简介
《汽车理论》课程教学课件(英文讲稿)第6章 汽车平顺性 Ride Performance 6.3 Simplify of Automobile Vibration System and Vibration of Single Mass System(汽车振动系统的简化及单质量系统的振动)
刷新页面文档预览

6.3 Simplify of Automobile Vibration System and Vibration of Single Mass System汽车振动系统的简化及单质量系统的振动1.SimplifyofAutomobileVibrationSystem7freedommodel自由度m模型4wheels车轮,Ix lyZ7mi善V(

7 freedom model自由度 模型 4 wheels车轮,Ix Iy Z 1. Simplify of Automobile Vibration System

x() = y(I) => only vertical vibration"z"and pitch vibration"β" = simplify to plane model1)总质量保持不变m2f + m2r + m2c = m2m2f2)质心位置不变m2rm2ra -m2rb = 0aam2c3)转动惯量保持不变MI, = m2P, = m2ra2 + m,b?mmirp-p-m2 = m2baLm2r=mPm2e=m,4freedoms:2wheels,Iy,Zab

( ) ( ) vertical vibration" " and pitch vibration" " simplify to z plane model x I y I only     1)总质量保持不变 2)质心位置不变 3)转动惯量保持不变                      ab m m bL m m aL m m y y y 2 2c 2 2 2r 2 2 2f 2 1    4 freedoms:2 wheels, Iy,Z m m m m 2 f 2 r 2 c 2    2f 2 r m a m b   0 2 2 2 y y 2 2f 2 r I m m a m b    

sprung mass distribution coefficient悬挂质量分配系数:ε=abs=1→ connection mass联系质量m2。=0= The vertical movement of m2r and m2rare independent. = Two freedoms modelTwo freedoms: one wheel ,Z

Two freedoms:one wheel ,Z 2 sprung mass distribution coefficient y a b  悬挂质量分配系数:  2 2 2 1 connection mass 0 The vertical movement of and are independent. Two freedoms model c f r m m m      = 联系质量

Dualmass vibrationsystem双质量振动系统m2rm21mmf

m1r m2r m2 f m1 f Dual mass vibration system 双质量振动系统

Singlemassvibration system单质量振动系统f < 5Hz = deflection of tyre is smallm2(f, : wheel natural frequency车轮固有频率,f~10~15Hz=Single mass vibration sys.9

( : wheel natural fr 5 deflection of t equency 10 ~ 1 yre is l 5 sma l t t Z f f z H f H    车轮  Single mass vibration 固有频率, ) sys. Single mass vibration system 单质量振动系统

2.FreeVibrationofSingleMassSystemsecond-order eguation with constant coefficients二阶常系数方程m2m,z+C(z-g)+K(z-g)=0K艺+ (z - g) = 0(2-) +一mm9

second-order equation with constant coefficients 二阶常系数方程 2. Free Vibration of Single Mass System 2 2 2 ( ) ( ) 0 ( ) ( ) 0 m z C z q K z q C K z z q z q m m          

K2n =assume :1m.m.の。:system natural circular frequency系统固有圆频率f。=2元2元LC:damping ratio阻尼比,=2/m,K

2 0 2 2 2 , C K n m m assume:    0 2 damping rati 2 o n C m K    : 阻尼比,   0 0 0 2 : system natural circular frequency 1 2 2 K f m       系统固有圆频率

homogenous differential equation齐次方程z+2nz +のjz = 0 0.25, belong to small damp:. z = Ae-nt sin(Jo? -n?t + α)O, : system natural frequency with damp有阻尼固有频率,,=-n2ne-vibration scope attenuation according to振幅按e-nt衰减

2 2 0 0.25, belong to small damp sin( ) nt z Ae n t          2 2 0 : system natural frequency with damp vibration scope attenuation according to , r r nt nt n e e      有阻尼固有频率,   振幅按 衰减 2 0 homogenous differential equation 2 0 : z nz z     齐次方程

Z一nteA2t2Ot1-Ae-ntT1Attenuation vibration curve衰减振动曲线

Attenuation vibration curve 衰减振动曲线

Attenuation vibration inf luenced by E阻尼比对衰减振动的影响(1)-n2=の。Or =1a个=0,S=1= 0,=0big damp=no vibration大阻尼时系统不振动0 - 0r ~ 3% = 0, ~ 0o~0.25=0o有阻尼后振动频率变化不大

2 2 2 0 0 1 r       n = - Attenuation vibration inf luenced by  0 0 0 0.25 3 r r             % 有阻尼后振动频率变化不大        r r 1 0  = = big damp no vibration 大阻尼时系统不振动

刷新页面下载完整文档
VIP每日下载上限内不扣除下载券和下载次数;
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
相关文档