复旦大学:《数学分析》第二章 数列极限(2.1)实数系的连续性

第二章数列极限 §1实数系的连续性 实数系 实数集合R的重要的基本性质——连续性
第二章 数列极限 §1 实数系的连续性 实数系 实数集合 R 的重要的基本性质——连续性

第二章数列极限 §1实数系的连续性 实数系 实数集合R的重要的基本性质——连续性。 数系的扩充历史 自然数集合N:关于加法与乘法运算是封闭的,但是N关于 减法运算并不封闭。 整数集合Z:关于加法、减法和乘法都封闭了,但是Z关于 除法是不封闭的。整数集合Z具有“离散性
第二章 数列极限 数系的扩充历史 自然数集合 N :关于加法与乘法运算是封闭的,但是 N 关于 减法运算并不封闭。 整数集合 Z:关于加法、减法和乘法都封闭了,但是 Z 关于 除法是不封闭的。整数集合 Z具有“离散性”。 §1 实数系的连续性 实数系 实数集合 R 的重要的基本性质——连续性

有理数集合Q={x1x=9,peN,q∈Z}。关于加法、减法、乘 法与除法四则运算都是封闭的。有理数集合Q具有“稠密性
有理数集合Q ⎭⎬⎫ ⎩⎨⎧ ∈∈== + qp ZN pq xx ,,| 。关于加法、减法、乘 法与除法四则运算都是封闭的。有理数集合Q具有“稠密性”。 c

有理数集合Q={x1x=9,p∈N,q∈Z。关于加法、减法、乘 P 法与除法四则运算都是封闭的。有理数集合Q具有“稠密性”。 虽然有理数集合是稠密的,但在坐标轴上留有“空隙”。例如 用表示边长为1的正方形的对角线的长度,这个c就无法用有理数 来表示。换言之,有理数集合对于开方运算是不封闭的。因此有 必要将有理数集合加以扩充。 图2.1.1
虽然有理数集合是稠密的,但在坐标轴上留有 “空隙 ”。例如 用表示边长为 1的正方形的对角线的长度,这个 c就无法用有理数 来表示。换言之,有理数集合对于开方运算是不封闭的。因此有 必要将有理数集合加以扩充。 -3 -2 -1 0 1 c 2 3 图2.1.1 有理数集合 Q ⎭ ⎬ ⎫ ⎩ ⎨ ⎧ ∈∈== + qp ZN p q xx ,,| 。关于加法、减法、乘 法与除法四则运算都是封闭的。有理数集合 Q具有“稠密性

有理数能表示成有限小数或无限循环小数,所以扩充有理数 集合Q最直接的方式,就是把所有的无限不循环小数(称为无理 数)吸纳进来。全体有理数和全体无理数所构成的集合称为实数集 R={xx是有理数或无理数}
有理数能表示成有限小数或无限循环小数,所以扩充有理数 集合 Q最直接的方式,就是把所有的无限不循环小数(称为无理 数)吸纳进来。全体有理数和全体无理数所构成的集合称为实数集 R : R ={ xx 是有理数或无理数}

有理数能表示成有限小数或无限循环小数,所以扩充有理数 集合Q最直接的方式,就是把所有的无限不循环小数(称为无理 数)吸纳进来。全体有理数和全体无理数所构成的集合称为实数集 R={xx是有理数或无理数}。 全体无理数所对应的点(称为无理点)填补了有理点在坐标 轴上的所有“空隙”,即实数铺满了整个数轴。 实数集合的这一性质称为实数系R的“连续性”。R又被称 为实数连续统。 实数系R的连续性,从几何角度理解,就是实数全体布满整 个数轴而没有“空隙”,但从分析角度阐述,则有多种相互等价 的表述方式。“确界存在定理”航就是实数系R连续性的表述之
有理数能表示成有限小数或无限循环小数,所以扩充有理数 集合 Q最直接的方式,就是把所有的无限不循环小数(称为无理 数)吸纳进来。全体有理数和全体无理数所构成的集合称为实数集 R : R ={ xx 是有理数或无理数}。 全体无理数所对应的点(称为无理点)填补了有理点在坐标 轴上的所有“空隙”,即实数铺满了整个数轴。 实数集合的这一性质称为实数系 R 的“连续性”。 R 又被称 为实数连续统。 实数系 R 的连续性,从几何角度理解,就是实数全体布满整 个数轴而没有“空隙”,但从分析角度阐述,则有多种相互等价 的表述方式。“确界存在定理”就是实数系 R 连续性的表述之一

最大数与最小数 记号:“彐”表示“存在”或“可以找到 y”表示 对于任意的”或“对于每一个”。例如 AcB x∈A,有x∈B, AB③彐x∈A,使得x∈B
最大数与最小数 记号:“∃ ”表示“存在”或“可以找到”,“∀ ”表示 “对于任意的”或“对于每一个”。例如 A ⊂ B ⇔ ∀ x A ∈ ,有 x ∈B , A ⊄ B ⇔ ∃ x A ∈ ,使得 x ∉B

最大数与最小数 记号:“彐”表示“存在”或“可以找到”,“y”表示 对于任意的”或“对于每一个”。例如 ACB分x∈A,有 x∈ B AB③彐x∈A,使得x∈B。 设S是一个数集,如果玉∈S,使得x∈S,有xs5,则称 ξ是数集S的最大数,记为5=maxS;如果彐∈S,使得x∈S, 有xn,则称n是数集S的最小数,记为n= min s 当数集S是非空有限集时,maxS是这有限个数中的最大 者,minS是这有限个数中的最小者。但是当S是无限集时,S 可能不具有最大数及最小数
设S 是一个数集,如果∃ξ ∈ S ,使得∀ x S ∈ ,有 x ≤ξ ,则称 ξ 是数集S 的最大数,记为ξ = max S ;如果∃η ∈ S ,使得∀ x S ∈ , 有 x ≥η ,则称η 是数集S 的最小数,记为η = min S 。 当数集S 是非空有限集时,max S 是这有限个数中的最大 者,min S 是这有限个数中的最小者。但是当S 是无限集时,S 可能不具有最大数及最小数。 最大数与最小数 记号:“∃ ”表示“存在”或“可以找到”,“∀ ”表示 “对于任意的”或“对于每一个”。例如 A ⊂ B ⇔ ∀ x A ∈ ,有 x ∈B , A ⊄ B ⇔ ∃ x A ∈ ,使得 x ∉B

例2.1.1集合A={xx≥0没有最大数,但有最小数, A=0
例2.1.1 集合 A = {| } x x ≥ 0 没有最大数,但有最小数, min A = 0

例2.1.1集合A={x|x≥0没有最大数,但有最小数, A=0。 例2.1.2集合B={x10≤xB,这就与B是集合B的最大数发生矛 盾。所以集合B没有最大数
例2.1.1 集合 A = {| } x x ≥ 0 没有最大数,但有最小数, min A = 0。 例2.1.2 集合 B = {| } x x 0 1 ≤ β ,这就与β 是集合 B的最大数发生矛 盾。所以集合 B没有最大数
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 复旦大学:《数学分析》用多项式逼近连续函数.pdf
- 复旦大学:《数学分析》第一章(1.2)多元连续函数.pdf
- 复旦大学:《数学分析》数学分析中一个反例的教学.pdf
- 复旦大学:《数学分析》第十章 函数项级数.pdf
- 复旦大学:《数学分析》函数项级数的一致收敛.pdf
- 复旦大学:《数学分析》函数的幂级数展开.pdf
- 复旦大学:《数学分析》第九章 数项级数(9.4)任意项级数习题.pdf
- 复旦大学:《数学分析》第九章 数项级数(9.3)正项级数习题.pdf
- 复旦大学:《数学分析》第九章 数项级数(9.1)数项级数的收敛性习题 9.2 上极限与下极限.pdf
- 复旦大学:《数学分析》第八章 反常积分(8.2)反常积分的收敛判别法习题.pdf
- 复旦大学:《数学分析》第八章 反常积分(8.1)反常积分的概念和计算习题.pdf
- 复旦大学:《数学分析》第七章 定积分(7.5)习题7.pdf
- 复旦大学:《数学分析》第七章 定积分(7.4)习题.pdf
- 复旦大学:《数学分析》第七章 定积分(7.3)习题.pdf
- 复旦大学:《数学分析》第七章 定积分(7.2)定积分的基本性质习题.pdf
- 复旦大学:《数学分析》第七章 定积分(7.1)定积分的概念和可积条件习题.pdf
- 复旦大学:《数学分析》第六章(6.3)习题.pdf
- 复旦大学:《数学分析》第六章(6.2)换元积分法和分部积分法习题.pdf
- 复旦大学:《数学分析》第六章(6.1)习题.pdf
- 复旦大学:《数学分析》第五章 微分中值定理及其应用(5.5)应用举例习题.pdf
- 复旦大学:《数学分析》实数系的连续性—实数系的基本定理.pdf
- 复旦大学:《数学分析》应用举例.pdf
- 复旦大学:《数学分析》微积分应用举例.pdf
- 复旦大学:《数学分析》教材与参考文献.doc
- 复旦大学:《数学分析》教学大纲.doc
- 复旦大学:《数学分析》条件极值问题.pdf
- 复旦大学:《数学分析》数学分析III试题.pdf
- 复旦大学:《数学分析III》2005~2006学年第一学期期末考试试卷.pdf
- 复旦大学:《数学分析III》试题解答.pdf
- 复旦大学:《数学分析III》试题.pdf
- 复旦大学:《数学分析II》2004~2005学年第二学期期末考试试卷.pdf
- 复旦大学:《数学分析II》试题答案.pdf
- 复旦大学:《数学分析(I)》2005~2006学年第一学期期末考试试卷.pdf
- 复旦大学:《数学分析(I)》2005~2006学年第一学期期末考试试卷.pdf
- 复旦大学:《数学分析(I)》试题答案.pdf
- 复旦大学:《数学分析》重积分变量代换公式的证明.pdf
- 复旦大学:《数学分析》闭区间上的连续函数.pdf
- 《模糊数学》课程讲义:第一章 模糊集的基本概念 1.3 变量、数据与函数 1.4 数据的输入与输出 1.5 数组与矩阵运算 1.6 M函数与M文件 第2章 图形与可视化.doc
- 《模糊数学》课程教学实验指导书.doc
- 《模糊数学》课程PPT课件:第1章 模糊集的基本概念.ppt