中国高校课件下载中心 》 教学资源 》 大学文库

香港中文大学:Efficient protocols for generating bipartite classical distributions and quantum states

文档信息
资源类别:文库
文档格式:PPTX
文档页数:17
文件大小:1.47MB
团购合买:点击进入团购
内容简介
香港中文大学:Efficient protocols for generating bipartite classical distributions and quantum states
刷新页面文档预览

ioing biparite classical distributions and quantum states Rahul Jain,Yaoyun Shi,Zhaohui Wei,Shengyu Zhang

Rahul Jain, Yaoyun Shi, Zhaohui Wei, Shengyu Zhang

randomness/entanglement Shared randomness/entanglement is an important resource in distributive settings. Question:How hard to generate a bipartite classical distribution or quantum state?

randomness/entanglement • Shared randomness/entanglement is an important resource in distributive settings. • Question: How hard to generate a bipartite classical distribution or quantum state?

3 scenarios Distribution generation Distribution approximation Quantum state approximation

3 scenarios • Distribution generation • Distribution approximation • Quantum state approximation

Target distribution:p(x,y)} TB (x,y)~p Available resource:seed correlation r. Correlation complexity:Corr(p)=min size(r) classical:r =(x',y')is classical correlation.-RCorr(p) 一 quantum:r =PAB is quantum state. QCorr(p)

Target distribution: {𝑝 𝑥, 𝑦 } • Available resource: seed correlation r. • Correlation complexity: Corr(p) = min size(r) – classical: 𝑟 = (𝑥’,𝑦’) is classical correlation. - RCorr(𝑝) – quantum: 𝑟 = 𝜌𝐴𝐵 is quantum state. - QCorr(𝑝) 𝑟𝐵 𝑥 𝑦 r ( , )  𝑝 𝑟𝐴

Target distribution:{p(x,y)} TB (x,y)~卫 Alternative resource:communication Communication complexity: Comm(p)=min size(message) classical:number of bits. RComm(p) quantum:number of qubits. QComm(p) -

Target distribution: {𝑝 𝑥, 𝑦 } • Alternative resource: communication • Communication complexity: Comm(p) = min size(message) – classical: number of bits. - RComm(p) – quantum: number of qubits. - QComm(p) 𝑟𝐵 (𝑥 , 𝑦 )  𝑝 𝑟𝐴

Target distribution:p(x,y)} (x,y)~卫 Question:What are these measures? ·[Z12] 88m8=&8m8.-89 ·[Z12] R(p)=flogrank+(P)] -P=[p(x,y)]xy

Target distribution: {𝑝 𝑥, 𝑦 } • Question: What are these measures? • [Z’12] RCorr(𝑝) = RComm(𝑝). −𝑅(𝑝) QCorr(𝑝) = QComm(𝑝), −𝑄(𝑝) • [Z’12] 𝑅(𝑝) = ⌈log 𝑟𝑎𝑛𝑘+(𝑃)⌉ – 𝑃 = 𝑝 𝑥, 𝑦 𝑥,𝑦 (𝑥, 𝑦)  𝑝

R(p)=logrank+(P) For (entry-wise)nonnegative matrices,we can define more variants. ·Nonnegative rank rank(M)=minfr:M=>=1Mi,rank(Mi)=13 rank+(M)=min{r:M =k=1Mk,rank(Mk)=1,Mk =0 Extensively-studied in linear algebra and engineering.Many connections to (T)CS

𝑅(𝑝) = ⌈log 𝑟𝑎𝑛𝑘+(𝑃)⌉ • For (entry-wise) nonnegative matrices, we can define more variants. • Nonnegative rank 𝑟𝑎𝑛𝑘 𝑀 = min 𝑟: 𝑀 = σ𝑖=1 𝑟 𝑀𝑖 , 𝑟𝑎𝑛𝑘 𝑀𝑖 = 1 𝑟𝑎𝑛𝑘+ 𝑀 = min 𝑟:𝑀 = σ𝑘=1 𝑟 𝑀𝑘 , 𝑟𝑎𝑛𝑘 𝑀𝑘 = 1,𝑀𝑘 ≥ 0 • Extensively-studied in linear algebra and engineering. Many connections to (T)CS

Quantum complexity (x,y)~p ·[Z12]4 log rank(P)≤Q(p)≤min{log rank(M):MoM=P} [Z'12]3p:Q(p)=1,R(p)=logn. [LKZ'11,FMPTW'12]3p:Q(p)=0(logn),R(p)=2(n). 。[This paper] Q(p)=logrankpsa(P) Improve previous lower bound to 12 log rank(P)

Quantum complexity • [Z’12] ¼ log 𝑟𝑎𝑛𝑘(𝑃) ≤ 𝑄 𝑝 ≤ min{⌈log 𝑟𝑎𝑛𝑘(𝑀)⌉: 𝑀 ∘ 𝑀ഥ = 𝑃} • [Z’12] ∃𝑝: 𝑄 𝑝 = 1, 𝑅 𝑝 ≥ log 𝑛. [LKZ’11,FMPTW’12] ∃𝑝: 𝑄 𝑝 = 𝑂 log 𝑛 , 𝑅 𝑝 = Ω(𝑛). • [This paper] 𝑄(𝑝) = log 𝑟𝑎𝑛𝑘𝑝𝑠𝑑 𝑃 – Improve previous lower bound to ½ log 𝑟𝑎𝑛𝑘(𝑃). (𝑥, 𝑦)  𝑝

n psd-rank m ax rank(M)=minfr:Mxy (ax,by),ax,by E R"} rankpsd(M)=minfr:Mxy =(Ax,By),Ax,By E PSDrxr} o Defined in [FMPTW'12],and showed to characterize the communication complexity of the following task: Px POVM {E} Requirement: E[]=p(x,y) quantum comm flogrankpsa(P)]

psd-rank 𝑟𝑎𝑛𝑘 𝑀 = min 𝑟: 𝑀𝑥𝑦 = 𝑎𝑥 , 𝑏𝑦 , 𝑎𝑥 , 𝑏𝑦 ∈ 𝐑 𝑟 𝑟𝑎𝑛𝑘𝑝𝑠𝑑 𝑀 = min 𝑟:𝑀𝑥𝑦 = 𝐴𝑥,𝐵𝑦 , 𝐴𝑥 ,𝐵𝑦 ∈ 𝐏𝐒𝐃𝑟×𝑟 • Defined in [FMPTW’12], and showed to characterize the communication complexity of the following task: quantum comm ≈ ⌈log 𝑟𝑎𝑛𝑘𝑝𝑠𝑑(𝑃)⌉ 𝑥 𝜌𝑥 𝑃𝑂𝑉𝑀 { 𝐸𝜃 𝑦 } Requirement: 𝐄 𝜃 = 𝑝(𝑥, 𝑦) m r r n 𝑎𝑥 𝑏𝑦

Proof sketch ·[Fact灯Q(p)= min{s-rank()):purifies p} -S-rank:Schmidt-rank. Now given Py =(Cx,Dy),let A and B share |〉=∑=1lx)A1vxi)A2☒ly)B1Wy,i)B2 -)ith-row ofCxwyi):ith-column ofDy. Measuring registers (A1,B1): Pr[x,y]=∑,j=1 VxiVxj)(Wy,iwy,)=(Cx,Dy〉 o Similar for the other direction

Proof sketch • [Fact] 𝑄 𝜌 = min{S−rank(|𝜓〉): |𝜓〉 purifies 𝜌} – S-rank: Schmidt-rank. • Now given 𝑃𝑥𝑦 = 〈𝐶𝑥,𝐷𝑦〉, let A and B share 𝜓 = σ𝑖=1 𝑟 𝑥 𝐴1 𝑣𝑥,𝑖 𝐴2 ⊗ 𝑦 𝐵1 𝑤𝑦,𝑖 𝐵2 – 𝑣𝑥,𝑖 : 𝑖 𝑡ℎ -row of 𝐶𝑥, 𝑤𝑦,𝑖 : 𝑖 𝑡ℎ -column of 𝐷𝑦. • Measuring registers (𝐴1,𝐵1): Pr 𝑥, 𝑦 = σ𝑖,𝑗=1 𝑟 〈𝑣𝑥,𝑖 𝑣𝑥,𝑗 〈𝑤𝑦,𝑖 𝑤𝑦,𝑗 = 𝐶𝑥,𝐷𝑦 • Similar for the other direction

共17页,试读已结束,阅读完整版请下载
刷新页面下载完整文档
VIP每日下载上限内不扣除下载券和下载次数;
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
相关文档