香港中文大学:《Probability and Statistics for Engineers》课程教学资源(课件讲稿)General random variables

NGG430Protaistics fonr Chapter 3:General Random Variables Instructor:Shengyu Zhang
Instructor: Shengyu Zhang

Content Continuous Random Variables and PDFs Cumulative Distribution Functions Normal Random Variables Joint PDFs of Multiple Random Variables Conditioning The Continuous Bayes'Rule
Content Continuous Random Variables and PDFs Cumulative Distribution Functions Normal Random Variables Joint PDFs of Multiple Random Variables Conditioning The Continuous Bayes’ Rule

Continuous Random Variables We've learned discrete random variables, which can be used for dice rolling,coin flipping,etc. Random variables with a continuous range of possible values are quite common. velocity of a vehicle traveling along the highway Continuous random variables are useful: finer-grained than discrete random variables able to exploit powerful tools from calculus
Continuous Random Variables We’ve learned discrete random variables, which can be used for dice rolling, coin flipping, etc. Random variables with a continuous range of possible values are quite common. velocity of a vehicle traveling along the highway Continuous random variables are useful: finer-grained than discrete random variables able to exploit powerful tools from calculus

Continuous r.v.and PDFs A random variable X is called continuous if there is a functionfx =0,called the probability density function of X,or PDF,s.t. P(X∈B)=fx(x)dx R for every subset B R. We assume the integral is well-defined Compared to discrete case:replace summation by integral
Continuous r.v. and PDFs A random variable 𝑋 is called continuous if there is a function 𝑓𝑋 ≥ 0, called the probability density function of 𝑋, or PDF, s.t. 𝑃 𝑋 ∈ 𝐵 = 𝑓𝑋 𝑥 𝑑𝑥 𝐵 for every subset 𝐵 ⊆ ℝ. We assume the integral is well-defined. Compared to discrete case: replace summation by integral

PDF In particular,when B [a,b], b pa≤X≤b)=x(x)dx is the area under the graph of PDF. PDF fx(x) Sample space b Event as Xsb}
PDF In particular, when 𝐵 = 𝑎, 𝑏 , 𝑃 𝑎 ≤ 𝑋 ≤ 𝑏 = 𝑓𝑋 𝑥 𝑑𝑥 𝑏 𝑎 is the area under the graph of PDF

PDE ■P(a≤X≤a)=∫%fx(x)dx=0. P(a≤X≤b)=P(a<X≤b) =P(a≤X<b)=P(a<X<b) The entire area under the graph is equal to 1. 00 fx(x)dx=P(-oo≤X≤o)=1 -00 PDF fx(a) Sample space Event{a≤Xsb)
PDF 𝑃 𝑎 ≤ 𝑋 ≤ 𝑎 = 𝑓𝑋 𝑥 𝑑𝑥 𝑎 𝑎 = 0. ∴ 𝑃 𝑎 ≤ 𝑋 ≤ 𝑏 = 𝑃 𝑎 < 𝑋 ≤ 𝑏 = 𝑃 𝑎 ≤ 𝑋 < 𝑏 = 𝑃 𝑎 < 𝑋 < 𝑏 The entire area under the graph is equal to 1. 𝑓𝑋 𝑥 𝑑𝑥 ∞ −∞ = 𝑃 −∞ ≤ 𝑋 ≤ ∞ = 1

Interpretation of PDF ·fx(x):“probability mass per unit length” ■P(lx,x+D=+fx()at≈fr(x)G PDF fx(x) xE+δ
Interpretation of PDF 𝑓𝑋(𝑥): “probability mass per unit length” 𝑃 𝑥, 𝑥 + 𝛿 = 𝑓𝑋 𝑡 𝑑𝑡 𝑥+𝛿 𝑥 ≈ 𝑓𝑋(𝑥) ∙ 𝛿

Example 1:Uniform Consider a random variable X takes value in interval a,b]. Any subintervals of the same length have the same probability. It is called uniform random variable
Example 1: Uniform Consider a random variable 𝑋 takes value in interval 𝑎, 𝑏 . Any subintervals of the same length have the same probability. It is called uniform random variable

Example 1:Uniform Its PDF has the form ifa≤x≤b otherwise PDF fx(x) 1 b-a 0 b
Example 1: Uniform Its PDF has the form 𝑓𝑋 𝑥 = 1 𝑏 − 𝑎 , if 𝑎 ≤ 𝑥 ≤ 𝑏 0, otherwise

Example 2:Piecewise Constant When sunny,driving time is 15-20 minutes. When rainy,driving time is 20-25 minutes. With all times equally likely in each case. Sunny with prob.2/3,rainy with prob.1/3 The PDF of driving time X is C1, if15≤x≤20 fx(x)= C2, if20≤x≤25 0, otherwise
Example 2: Piecewise Constant When sunny, driving time is 15-20 minutes. When rainy, driving time is 20-25 minutes. With all times equally likely in each case. Sunny with prob. 2/3, rainy with prob. 1/3 The PDF of driving time 𝑋 is 𝑓𝑋 𝑥 = 𝑐1, if 15 ≤ 𝑥 ≤ 20 𝑐2, if 20 ≤ 𝑥 ≤ 25 0, otherwise
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 香港中文大学:《Probability and Statistics for Engineers》课程教学资源(课件讲稿)Further Topics on Random Variables.pptx
- 香港中文大学:《Probability and Statistics for Engineers》课程教学资源(课件讲稿)Further Topics on Random Variables.pdf
- 香港中文大学:《Probability and Statistics for Engineers》课程教学资源(课件讲稿)Discrete random variables.pptx
- 香港中文大学:《Probability and Statistics for Engineers》课程教学资源(课件讲稿)Discrete random variables.pdf
- 香港中文大学:《Probability and Statistics for Engineers》课程教学资源(课件讲稿)Sample space and probability.pptx
- 香港中文大学:《Probability and Statistics for Engineers》课程教学资源(课件讲稿)Sample space and probability.pdf
- 香港中文大学:Random Walk on Graphs and its Algorithmic Applications.ppt
- 香港中文大学:An Introduction to Quantum Computing in Theoretical Computer Science.ppt
- 香港中文大学:On the power of lower bound methods for quantum one-way communication complexity.ppt
- 香港中文大学:Quantum strategic game theory.ppt
- 香港中文大学:A quantum protocol for sampling correlated equilibria unconditionally and without a mediator.pptx
- 香港中文大学:On the complexity of trial and error.pptx
- 香港中文大学:Efficient protocols for generating bipartite classical distributions and quantum states.pptx
- 香港中文大学:Fourier sparsity, spectral norm, and the Log-rank conjecture(long).pptx
- 香港中文大学:Fourier sparsity, spectral norm, and the Log-rank conjecture(short).pptx
- 香港中文大学:Fast quantum algorithms for Least Squares Regression and Statistic Leverage Scores.pptx
- 香港中文大学:Sensitivity Conjecture and Log-rank Conjecture for functions with small alternating numbers.pptx
- 香港中文大学:Networked Fairness in Cake Cutting.pptx
- 《金陵科技学院学报》:高形变二维码识别算法设计与实现.pdf
- 东北大学:《可信计算基础》课程教学资源(试卷习题)期末考试样题.doc
- 香港中文大学:《Probability and Statistics for Engineers》课程教学资源(课件讲稿)Limit Theorems.pdf
- 香港中文大学:《Probability and Statistics for Engineers》课程教学资源(课件讲稿)Limit Theorems.pptx
- 香港中文大学:《Probability and Statistics for Engineers》课程教学资源(课件讲稿)Bayesian Statistical Inference.pdf
- 香港中文大学:《Probability and Statistics for Engineers》课程教学资源(课件讲稿)Bayesian Statistical Inference.pptx
- 香港中文大学:《Probability and Statistics for Engineers》课程教学资源(课件讲稿)Classical Statistical Inference.pdf
- 香港中文大学:《Probability and Statistics for Engineers》课程教学资源(课件讲稿)General random variables.pptx
- 香港中文大学:《Probability and Statistics for Engineers》课程教学资源(课件讲稿)Classical Statistical Inference.pptx
- 香港中文大学:《Probability and Statistics for Engineers》课程教学资源(辅导材料)Tutorial 1:Sample Space and Probability 1.pdf
- 香港中文大学:《Probability and Statistics for Engineers》课程教学资源(辅导材料)Tutorial 1:Sample Space and Probability 1.pptx
- 香港中文大学:《Probability and Statistics for Engineers》课程教学资源(辅导材料)Tutorial 2:Sample Space and Probability 2.pdf
- 香港中文大学:《Probability and Statistics for Engineers》课程教学资源(辅导材料)Tutorial 2:Sample Space and Probability 2.pptx
- 香港中文大学:《Probability and Statistics for Engineers》课程教学资源(辅导材料)Tutorial 3:Discrete Random Variables 1.pdf
- 香港中文大学:《Probability and Statistics for Engineers》课程教学资源(辅导材料)Tutorial 3:Discrete Random Variables 1.pptx
- 香港中文大学:《Probability and Statistics for Engineers》课程教学资源(辅导材料)Tutorial 4:Discrete Random Variables 2.pdf
- 香港中文大学:《Probability and Statistics for Engineers》课程教学资源(辅导材料)Tutorial 4:Discrete Random Variables 2.pptx
- 香港中文大学:《Probability and Statistics for Engineers》课程教学资源(辅导材料)Tutorial 5:General Random Variables 1.pdf
- 香港中文大学:《Probability and Statistics for Engineers》课程教学资源(辅导材料)Tutorial 5:General Random Variables 1.pptx
- 香港中文大学:《Probability and Statistics for Engineers》课程教学资源(辅导材料)Tutorial 6:General Random Variables 2.pdf
- 香港中文大学:《Probability and Statistics for Engineers》课程教学资源(辅导材料)Tutorial 6:General Random Variables 2.pptx
- 香港中文大学:《Probability and Statistics for Engineers》课程教学资源(辅导材料)Tutorial 7:General Random Variables 3.pdf