香港中文大学:Quantum strategic game theory

Quantum stratenic game theory Shengyu Zhang The Chinese University of Hong Kong
Shengyu Zhang The Chinese University of Hong Kong

Why we are here? Understanding the power of quantum Computation:quantum algorithms/complexity Communication:quantum info.theory This work:game theory
Why we are here? ◼ Understanding the power of quantum ❑ Computation: quantum algorithms/complexity ❑ Communication: quantum info. theory ❑ … ◼ This work: game theory

Game:Two basic forms SCISSORS strategic (normal)form extensive form
Game: Two basic forms strategic (normal) form extensive form

Game:Two basic forms n players:P1,...,P Pi has a set Si of strategies ■P,has a utility function u:S→R SCISSORS ▣S=S1×S2×…×Sn strategic (normal)form
Game: Two basic forms strategic (normal) form ◼ n players: P1 , …, Pn ◼ Pi has a set Si of strategies ◼ Pi has a utility function ui : S→ℝ ❑ S = S1 S2 ⋯ Sn

Nash equilibrium Nash equilibrium:each player has adopted an optimal strategy,provided that others keep their strategies unchanged
Nash equilibrium ◼ Nash equilibrium: each player has adopted an optimal strategy, provided that others keep their strategies unchanged

Nash equilibrium Pure Nash equilibrium: a joint strategy s=(s1,...,s)s.t.Vi, u(S,S)≥u(S,S) (Mixed)Nash equilibrium (NE): a product distribution p=p1×..×Pst.i,s,' Es-plu(s,s】≥Es-puS,sl
Nash equilibrium ◼ Pure Nash equilibrium: a joint strategy s = (s1 , …, sn ) s.t. i, ui (si ,s-i ) ≥ ui (si ’,s-i ) ◼ (Mixed) Nash equilibrium (NE): a product distribution p = p1 … pn s.t. i,si ’ Es←p [ui (si ,s-i )] ≥ Es←p [ui (si ’,s-i )]

Correlated equilibrium Correlated equilibrium (CE):p s.t.Vi,si,si EsA p(gs)[ui(si;sii)].Es p(gs:)[ui(s;Sii)] CE NE n {product distributions} Nash and Aumann:two Laureate ofNobel Prize in Economic Sciences
Correlated equilibrium ◼ Correlated equilibrium (CE): p s.t. i, si , si ’ ◼ CE = NE ∩ {product distributions} E s ¡ i à p( ¢jsi ) [ui (si ;s¡ i )] ¸ E s ¡ i à p(¢jsi ) [ui (s 0 i ;s¡ i )] Nash and Aumann: two Laureate of Nobel Prize in Economic Sciences

Why correlated equilibrium? Traffic Light Game theory Cross natural Stop -100 0 Cross -100 1 0 Stop 0 0 ■ 2 pure NE:one crosses and one stops.Payoff:(0,1)or(1,0) Bad:unfair. 1 mixed NE:both cross w.p.1/101. Good:Fair 口 Bad:Low payoff:both ~0.0001 Worse:Positive chance of crash CE:(Cross,Stop)w.p.1,(Stop,Cross)w.p.V Fair,high payoff,0 chance of crash
Why correlated equilibrium? Cross Stop Cross -100 -100 0 1 Stop 1 0 0 0 Game theory natural ◼ 2 pure NE: one crosses and one stops. Payoff: (0,1) or (1,0) ❑ Bad: unfair. ◼ 1 mixed NE: both cross w.p. 1/101. ❑ Good: Fair ❑ Bad: Low payoff: both ≃ 0.0001 ❑ Worse: Positive chance of crash ◼ CE: (Cross,Stop) w.p. ½, (Stop,Cross) w.p. ½ ❑ Fair, high payoff, 0 chance of crash. Traffic Light

Why correlated equilibrium? Game theory Math natural nice Set of correlated equilibria is convex. The NE are vertices of the CE polytope (in any non- degenerate 2-player game) All CE in graphical games can be represented by ones as product functions of each neighborhood
Why correlated equilibrium? Game theory natural Math nice ◼ Set of correlated equilibria is convex. ◼ The NE are vertices of the CE polytope (in any nondegenerate 2-player game) ◼ All CE in graphical games can be represented by ones as product functions of each neighborhood

Why correlated equilibrium? Game theory Math natural nice CS feasible [Obs]A CE can found in poly.time by LP. natural dynamics-approximate CE. A CE in graphical games can be found in poly.time
Why correlated equilibrium? Game theory natural Math nice ◼ [Obs] A CE can found in poly. time by LP. ◼ natural dynamics → approximate CE. ◼ A CE in graphical games can be found in poly. time. CS feasible
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 香港中文大学:A quantum protocol for sampling correlated equilibria unconditionally and without a mediator.pptx
- 香港中文大学:On the complexity of trial and error.pptx
- 香港中文大学:Efficient protocols for generating bipartite classical distributions and quantum states.pptx
- 香港中文大学:Fourier sparsity, spectral norm, and the Log-rank conjecture(long).pptx
- 香港中文大学:Fourier sparsity, spectral norm, and the Log-rank conjecture(short).pptx
- 香港中文大学:Fast quantum algorithms for Least Squares Regression and Statistic Leverage Scores.pptx
- 香港中文大学:Sensitivity Conjecture and Log-rank Conjecture for functions with small alternating numbers.pptx
- 香港中文大学:Networked Fairness in Cake Cutting.pptx
- 《金陵科技学院学报》:高形变二维码识别算法设计与实现.pdf
- 东北大学:《可信计算基础》课程教学资源(试卷习题)期末考试样题.doc
- 东北大学:《可信计算基础》课程教学资源(PPT课件讲稿)TSS示例程序.pptx
- 东北大学:《可信计算基础》课程教学资源(PPT课件讲稿)TSS软件栈 TSS-TCG Software Stack.pptx
- 东北大学:《可信计算基础》课程教学资源(PPT课件讲稿)第6讲 可信启动.pptx
- 东北大学:《可信计算基础》课程教学资源(PPT课件讲稿)第6章 TPM核心功能.pptx
- 东北大学:《可信计算基础》课程教学资源(PPT课件讲稿)第6讲 可信计算基础.pptx
- 东北大学:《可信计算基础》课程教学资源(PPT课件讲稿)第4讲 公钥基础设施(PKI).ppt
- 东北大学:《可信计算基础》课程教学资源(PPT课件讲稿)第三讲 认证技术与数字签名.ppt
- 东北大学:《可信计算基础》课程教学资源(PPT课件讲稿)第二章 密码学技术.ppt
- 东北大学:《可信计算基础》课程教学资源(PPT课件讲稿)第一章 概述(主讲:周福才).pptx
- 东北大学:《信息安全专业概论与职业发展》课程教学资源(PPT课件讲稿)第一讲 浅析专业与兴趣(主讲:周福才).pptx
- 香港中文大学:On the power of lower bound methods for quantum one-way communication complexity.ppt
- 香港中文大学:An Introduction to Quantum Computing in Theoretical Computer Science.ppt
- 香港中文大学:Random Walk on Graphs and its Algorithmic Applications.ppt
- 香港中文大学:《Probability and Statistics for Engineers》课程教学资源(课件讲稿)Sample space and probability.pdf
- 香港中文大学:《Probability and Statistics for Engineers》课程教学资源(课件讲稿)Sample space and probability.pptx
- 香港中文大学:《Probability and Statistics for Engineers》课程教学资源(课件讲稿)Discrete random variables.pdf
- 香港中文大学:《Probability and Statistics for Engineers》课程教学资源(课件讲稿)Discrete random variables.pptx
- 香港中文大学:《Probability and Statistics for Engineers》课程教学资源(课件讲稿)Further Topics on Random Variables.pdf
- 香港中文大学:《Probability and Statistics for Engineers》课程教学资源(课件讲稿)Further Topics on Random Variables.pptx
- 香港中文大学:《Probability and Statistics for Engineers》课程教学资源(课件讲稿)General random variables.pdf
- 香港中文大学:《Probability and Statistics for Engineers》课程教学资源(课件讲稿)Limit Theorems.pdf
- 香港中文大学:《Probability and Statistics for Engineers》课程教学资源(课件讲稿)Limit Theorems.pptx
- 香港中文大学:《Probability and Statistics for Engineers》课程教学资源(课件讲稿)Bayesian Statistical Inference.pdf
- 香港中文大学:《Probability and Statistics for Engineers》课程教学资源(课件讲稿)Bayesian Statistical Inference.pptx
- 香港中文大学:《Probability and Statistics for Engineers》课程教学资源(课件讲稿)Classical Statistical Inference.pdf
- 香港中文大学:《Probability and Statistics for Engineers》课程教学资源(课件讲稿)General random variables.pptx
- 香港中文大学:《Probability and Statistics for Engineers》课程教学资源(课件讲稿)Classical Statistical Inference.pptx
- 香港中文大学:《Probability and Statistics for Engineers》课程教学资源(辅导材料)Tutorial 1:Sample Space and Probability 1.pdf
- 香港中文大学:《Probability and Statistics for Engineers》课程教学资源(辅导材料)Tutorial 1:Sample Space and Probability 1.pptx
- 香港中文大学:《Probability and Statistics for Engineers》课程教学资源(辅导材料)Tutorial 2:Sample Space and Probability 2.pdf