同济大学:《线性代数》课程教学资源(PPT课件讲稿)第五章 相似矩陈及二次型(5-6)用配方法化二次型成标准形

似矩藤及二次 第六节用配方法化二次型成标准形 > 格朗日配方法的具体步骤 小结思考题 帮助四

一、拉格朗日配方法的具体步骤 用正交变换化二次型为标准形,其特点是保 持几何形状不变. 问题有没有其它方法,也可以把二次型化 为标准形? 问题的回答是肯定的。下面介绍一种行之有 效的方法拉格朗日配方法 上页
一、拉格朗日配方法的具体步骤 用正交变换化二次型为标准形,其特点是保 持几何形状不变. 问题 有没有其它方法,也可以把二次型化 为标准形? 问题的回答是肯定的。下面介绍一种行之有 效的方法——拉格朗日配方法.

拉格朗日配方法的步骤 若二次型含有x的平方项,则先把含有 x的乘积项集中,然后配方,再对其余的变量同 样进行,直到都配成平方项为止,经过非退化线 性变换,就得到标准形 2.若二次型中不含有平方项,但是an≠0 中(≠则先作可逆线性变换 Ci- y 牛{x=y+y1(=12…,n且≠ 牛化二次型为含有平方项的二次型,然后再按中方 法配方 上页
1. 若二次型含有 的平方项,则先把含有 的乘积项集中,然后配方,再对其余的变量同 样进行,直到都配成平方项为止,经过非退化线 性变换,就得到标准形; i x xi = = + = − k k j i j i i j x y x y y x y y (k = 1,2, ,n且k i, j) 拉格朗日配方法的步骤 2. 若二次型中不含有平方项,但是 则先作可逆线性变换 aij 0 (i j), 化二次型为含有平方项的二次型,然后再按1中方 法配方

例1化二次型 f=x1+2x2+5x3+2x1x2+2x1x3+6x2X 为标准形,并求所用的变换矩阵 解 含有平方项含有x的项配方 ∫=网2x+5+2千么xx3+6x2x +4122+2x,x2+2x2+5x2+6x2x3 =(x+x2+x)2去掉配方后多出来的项 x2-x3-2x2x+2x2+5x3+6x2x3 上页
解 1 2 1 3 2 3 2 3 2 2 2 f = x1 + 2x + 5x + 2x x + 2x x + 6x x , . 2 5 2 2 6 1 2 1 3 2 3 2 3 2 2 2 1 为标准形 并求所用的变换矩阵 化二次型 f = x + x + x + x x + x x + x x 例1 1 2 1 3 2 x1 + 2x x + 2x x 2 3 2 3 2 = + 2x2 + 5x + 6x x 含有平方项 含有 x1的项配方 = ( ) 2 1 2 3 x + x + x 2 3 2 3 2 2 + 2x + 5x + 6x x 2 3 2 3 2 2 − x − x − 2x x 去掉配方后多出来的项

=(x1+x2+x3)+x2+4x2+4x =(x1+x2+x)+(x2+2x3) y1=x1+x2+ 1=y1-y2+y 令n2=x2+23→{x2=y2-2y J3=x3 3=J3 C1 11 台x2=101-2 00 y3 上页
( ) 2 3 2 3 2 2 2 1 2 3 = x + x + x + x + 4x + 4x x ( ) ( 2 ) . 2 2 3 2 1 2 3 = x + x + x + x + x = = + = + + 3 3 2 2 3 1 1 2 3 2 y x y x x y x x x 令 = = − = − + 3 3 2 2 3 1 1 2 3 2 x y x y y x y y y − − = 3 2 1 3 2 1 0 0 1 0 1 2 1 1 1 y y y x x x

f=x2+2x2+5x3+2x1x2+2x1x3+6x2x3 十 所用变换矩阵为 C=01-2,(c=1≠0 001 上页
1 2 1 3 2 3 2 3 2 2 2 f = x1 + 2x + 5x + 2x x + 2x x + 6x x . 2 2 2 1 = y + y 所用变换矩阵为 , ( 1 0). 0 0 1 0 1 2 1 1 1 = − − C = C

例2化二次型 f=2x1x2+2x1x3-6x2x3 成标准形,并求所用的变换矩阵 解由于所给二次型中无平方项,所以 x1=y1+y2 1 110 V1 令 x2=y1-y2 即x 0y2 3=y3 x3)(001八y 王代入厂=2x2+2x一6x写, 得=2y2-2y2-4yy3+8y2y3 上页
, 3 3 2 1 2 1 1 2 = = − = + x y x y y x y y 令 解 2 2 6 , x1 x2 x1 x3 x2 x3 代入 f = + − 2 2 4 8 . 1 3 2 3 2 2 2 1 得 f = y − y − y y + y y , . 2 2 6 1 2 1 3 2 3 成标准形 并求所用的变换矩阵 化二次型 f = x x + x x − x x 例2 由于所给二次型中无平方项,所以 = − y y y x x x 3 2 1 3 2 1 0 0 1 1 1 0 1 1 0 即

再配方,得 f=2(V1-y3)-2(V2-23)+6y 令 y 1 1 0 二42 3 y2 2 Z 2 y 3 J 0 3 得 f 2 z 2 6 z 3 上
再配方,得 2( ) 2( 2 ) 6 . 2 3 2 2 3 2 1 3 f = y − y − y − y + y = = − = − 3 3 2 2 3 1 1 3 2 z y z y y z y y 令 2 , 3 3 2 2 3 1 1 3 = = + = + y z y z z y z z 2 2 6 . 2 3 2 2 2 1 得 f = z − z + z = z z z y y y 3 2 1 3 2 1 0 0 1 0 1 2 1 0 1 即

所用变换矩阵为 110/101 C=1-10012 001人001 113 =|1-1-1(c=-2≠0) 001 上页
所用变换矩阵为 = − 0 0 1 0 1 2 1 0 1 0 0 1 1 1 0 1 1 0 C . 0 0 1 1 1 1 1 1 3 = − − (C = −2 0)

生二、小结 将一个二次型化为标准形,可以用正交变换 法,也可以用拉格朗日配方法,或者其它方法, 这取决于问题的要求.如果要求找出一个正交矩 阵,无疑应使用正交变换法;如果只需要找出 个可逆的线性变换,那么各种方法都可以使用 正交变换法的好处是有固定的步骤,可以按部就 工工工 班一步一步地求解,但计算量通常较大;如果二 次型中变量个数较少,使用拉格朗日配方法反而 比较简单.需要注意的是,使用不同的方法,所 得到的标准形可能不相同,但标准形中含有的项 数必定相同,项数等于所给二次型的秩. 上页
二、小结 将一个二次型化为标准形,可以用正交变换 法,也可以用拉格朗日配方法,或者其它方法, 这取决于问题的要求.如果要求找出一个正交矩 阵,无疑应使用正交变换法;如果只需要找出一 个可逆的线性变换,那么各种方法都可以使用. 正交变换法的好处是有固定的步骤,可以按部就 班一步一步地求解,但计算量通常较大;如果二 次型中变量个数较少,使用拉格朗日配方法反而 比较简单.需要注意的是,使用不同的方法,所 得到的标准形可能不相同,但标准形中含有的项 数必定相同,项数等于所给二次型的秩.
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 同济大学:《线性代数》课程教学资源(PPT课件讲稿)第五章 相似矩陈及二次型(5-5)二次型及其标准形.ppt
- 同济大学:《线性代数》课程教学资源(PPT课件讲稿)第五章 相似矩陈及二次型(5-4)对称矩阵的相似矩阵.ppt
- 同济大学:《线性代数》课程教学资源(PPT课件讲稿)第五章 相似矩陈及二次型(5-3)相似矩阵.ppt
- 同济大学:《线性代数》课程教学资源(PPT课件讲稿)第五章 相似矩陈及二次型(5-2)方阵的特征值与特征向量.ppt
- 同济大学:《线性代数》课程教学资源(PPT课件讲稿)第五章 相似矩陈及二次型(5-1)预备知识:向量的内积.ppt
- 同济大学:《线性代数》课程教学资源(PPT课件讲稿)第二章 矩阵及其运算习题课.ppt
- 同济大学:《线性代数》课程教学资源(PPT课件讲稿)第二章 矩阵及其运算(2-4)矩阵分块法.ppt
- 同济大学:《线性代数》课程教学资源(PPT课件讲稿)第二章 矩阵及其运算(2-3)逆矩阵.ppt
- 同济大学:《线性代数》课程教学资源(PPT课件讲稿)第二章 矩阵及其运算(2-1)矩阵.ppt
- 同济大学:《线性代数》课程教学资源(PPT课件讲稿)第三章矩阵的初等变换与线性方程组 习题课.ppt
- 同济大学:《线性代数》课程教学资源(PPT课件讲稿)第三章 矩阵的初等变换与线性方程组(3-4)初等矩阵.ppt
- 同济大学:《线性代数》课程教学资源(PPT课件讲稿)第三章 矩阵的初等变换与线性方程组(3-3)线性方程组的解.ppt
- 同济大学:《线性代数》课程教学资源(PPT课件讲稿)第三章 矩阵的初等变换与线性方程组(3-2)矩阵的秩.ppt
- 同济大学:《线性代数》课程教学资源(PPT课件讲稿)第三章 矩阵的初等变换与线性方程组(3-1)矩阵的初等变换.ppt
- 同济大学:《线性代数》课程教学资源(PPT课件讲稿)第一章 行列式习题课.ppt
- 同济大学:《线性代数》课程教学资源(PPT课件讲稿)第一章 行列式(1-7)克拉默法则.ppt
- 同济大学:《线性代数》课程教学资源(PPT课件讲稿)第一章 行列式(1-6)行列式按行(列)展开.ppt
- 同济大学:《线性代数》课程教学资源(PPT课件讲稿)第一章 行列式(1-5)行列式的性质.ppt
- 同济大学:《线性代数》课程教学资源(PPT课件讲稿)第一章 行列式(1-4)对换.ppt
- 同济大学:《线性代数》课程教学资源(PPT课件讲稿)第一章 行列式(1-3)n阶行列式的定义.ppt
- 同济大学:《线性代数》课程教学资源(PPT课件讲稿)第五章 相似矩陈及二次型(5-7)正定二次型.ppt
- 同济大学:《线性代数》课程教学资源(PPT课件讲稿)第六章 线性空间与线性变换(6-1)线性空间的定义与性质.ppt
- 同济大学:《线性代数》课程教学资源(PPT课件讲稿)第六章 线性空间与线性变换(6-2)维数、基与坐标.ppt
- 同济大学:《线性代数》课程教学资源(PPT课件讲稿)第六章 线性空间与线性变换(6-3)基变换与坐标变换.ppt
- 同济大学:《线性代数》课程教学资源(PPT课件讲稿)第六章 线性空间与线性变换(6-4)线性变换.ppt
- 同济大学:《线性代数》课程教学资源(PPT课件讲稿)第六章 线性空间与线性变换(6-5)线性变换的矩阵表示式.ppt
- 同济大学:《线性代数》课程教学资源(PPT课件讲稿)第六章 习题课.ppt
- 同济大学:《线性代数》课程教学资源(PPT课件讲稿)第四章 向量组的线性相关性(4-1)n维向量.ppt
- 同济大学:《线性代数》课程教学资源(PPT课件讲稿)第四章 向量组的线性相关性(4-2)向量组的线性相关性.ppt
- 同济大学:《线性代数》课程教学资源(PPT课件讲稿)第四章 向量组的线性相关性(4-3)向量组的秩.ppt
- 同济大学:《线性代数》课程教学资源(PPT课件讲稿)第四章 向量组的线性相关性(4-4)向量空间.ppt
- 同济大学:《线性代数》课程教学资源(PPT课件讲稿)第四章 向量组的线性相关性习题课.ppt
- 《数学分析》课程教学资源(考研讲义)广义积分的收敛性.doc
- 《数学分析》课程教学资源(考研讲义)极限与连续.doc
- 《数学分析》课程教学资源(考研讲义)凸函数及其应用.doc
- 《数学分析》课程教学资源(考研讲义)级数的收敛性.doc
- 《数学分析》课程教学资源(考研讲义)阶的概念.doc
- 《数学分析》课程教学资源(考研讲义)微分方法的应用.doc
- 《数学分析》课程教学资源(考研讲义)积分不等式.doc
- 《数值分析》课程教学资源(PPT课件)第六章 线性代数方程组的数值解 §1 引言 §2 Gauss 消去法.ppt