厦门大学数学科学学院:《高等代数》课程教学资源(应用与实验)MATLAB Ex 3 - Linear Space(10)

MATLAB Exe School of mathematical ces Xiamen University httplgdipke.xmuedu MATLAB Exercise 3- Linear Space differen of the following are spanning sets for r Justify your answers by at least tw ent methods. (related function may be used rank, rref, det) 1)(0(11 1)10,10 2){0,10,2 2)(2 6 l)lx∈Span(x12x2)? 2)lsy∈Span(x1,x2)? (related function: rref, rank) 3. Which of the following are spanning sets for P3? Justify your answer 1){x2x+ 2)2x-2,x,2x2+ x+1,x-2,x2+3 Help size(A, 1) returns the number of rows ofA size(A, 2 )returns the number of columns ofA 4. Which of the following collections of vectors are linearly independent? 1){1110 2) 3){1-12 5. For each of the sets of vectors in Exercise 3, describe geometrically the span of the given vectors(i.e point out the maximal linearly independent subset for each of the sets of vectors. 6. Given X x 1)Show that x,, x2, x, are linearly dependent 2)Show that x, and x, are linearly independent Ex3-1
MATLAB Exercise 3 School of Mathematical Sciences Xiamen University http://gdjpkc.xmu.edu. Ex31 MATLAB Exercise 3 – Linear Space 1. Which of the following are spanning sets for 3 1 R ¥ ? Justify your answers by at least two different methods. (related function may be used: rank, rref, det) 1) 1 0 1 0 , 1 , 0 0 1 1 ÏÊ ˆ Ê ˆ Ê ˆ ¸ ÔÁ ˜ Á ˜ Á ˜ Ô Ì ˝ Á ˜ Á ˜ Á ˜ ÔÁ ˜ Á ˜ Á ˜ Ô ÓË ¯ Ë ¯ Ë ¯ ˛ 2) 1 0 1 1 0 , 1 , 0 , 2 0 1 1 3 ÏÊ ˆ Ê ˆ Ê ˆ Ê ˆ ¸ ÔÁ ˜ Á ˜ Á ˜ Á ˜ Ô Ì ˝ Á ˜ Á ˜ Á ˜ Á ˜ ÔÁ ˜ Á ˜ Á ˜ Á ˜ Ô ÓË ¯ Ë ¯ Ë ¯ Ë ¯ ˛ 3) 2 3 2 1 , 2 , 2 2 2 0 ÏÊ ˆ Ê ˆ Ê ˆ ¸ ÔÁ ˜ Á ˜ Á ˜ Ô Ì ˝ Á ˜ Á ˜ Á ˜ ÔÁ ˜ Á ˜ Á ˜ Ô ÓË- ¯ Ë- ¯ Ë ¯ ˛ 4) 2 2 4 1 , 1 , 2 2 2 4 ÏÊ ˆ Ê- ˆ Ê ˆ ¸ ÔÁ ˜ Á ˜ Á ˜ Ô Ì - ˝ Á ˜ Á ˜ Á ˜ ÔÁ ˜ Á ˜ Á ˜ Ô ÓË- ¯ Ë ¯ Ë- ¯ ˛ 2. Given 1 2 1 3 2 9 2 , 4 , 6 , 2 3 2 6 5 x x x y Ê - ˆ Ê ˆ Ê ˆ Ê - ˆ Á ˜ Á ˜ Á ˜ Á ˜ = = = = - Á ˜ Á ˜ Á ˜ Á ˜ Á ˜ Á ˜ Á ˜ Á ˜ Ë ¯ Ë ¯ Ë ¯ Ë ¯ 1) Is Span 1 2 xŒ (x , x ) ? 2) Is Span 1 2 y Œ (x , x ) ? (related function: rref, rank) 3. Which of the following are spanning sets for P3? Justify your answer. 1) { } 2 2 1, x , x +1 2) { } 2 2, x - 2, x, 2x +1 3) { } 2 x +1, x - 2, x + 3 Help size(A,1) returns the number of rows of A size(A,2) returns the number of columns of A 4. Which of the following collections of vectors are linearly independent? 1) 1 0 1 1 , 1 , 0 1 1 1 ÏÊ ˆ Ê ˆ Ê ˆ ¸ ÔÁ ˜ Á ˜ Á ˜ Ô Ì ˝ Á ˜ Á ˜ Á ˜ ÔÁ ˜ Á ˜ Á ˜ Ô ÓË ¯ Ë ¯ Ë ¯ ˛ 2) 2 2 1 , 2 2 0 ÏÊ ˆ Ê ˆ ¸ ÔÁ ˜ Á ˜ Ô Ì ˝ Á ˜ Á ˜ ÔÁ ˜ Á ˜ Ô ÓË- ¯ Ë ¯ ˛ 3) 2 2 4 1 , 1 , 2 2 2 4 ÏÊ ˆ Ê- ˆ Ê ˆ ¸ ÔÁ ˜ Á ˜ Á ˜ Ô Ì - ˝ Á ˜ Á ˜ Á ˜ ÔÁ ˜ Á ˜ Á ˜ Ô ÓË- ¯ Ë ¯ Ë- ¯ ˛ 5. For each of the sets of vectors in Exercise 3, describe geometrically the span of the given vectors. (i.e. point out the maximal linearly independent subset for each of the sets of vectors.) 6. Given 1 2 3 1 3 0 2 , 4 , 10 3 2 11 x x x Ê - ˆ Ê ˆ Ê ˆ Á ˜ Á ˜ Á ˜ = = = Á ˜ Á ˜ Á ˜ Á ˜ Á ˜ Á ˜ Ë ¯ Ë ¯ Ë ¯ 1) Show that 1 2 3 x , x , x are linearly dependent. 2) Show that 1 x and 2 x are linearly independent

MATLAB Exercise 3 School of Mathematical Sciences Xiamen University httplgdipke.xmuedu 3)What is the dimension of Span(X,,x2, x3)? 4)Give a geometric description of Span(Xi,x2,x,) 7. The vectors 10 7 11 Span R. Pare down the set X,, x2,x,, x4, x, to form a basis for R 8.Lex=(2 Find the coordinates(Akt)of x with respect to,,x (i.e. A=(x1,x2), the coordinates of x with respect to,, x, is c=A x) 9. Let x x be a basis of r. Find the transition matrix from the standard basis er e2) to the basis ( x1, x2) and determine the coordinates ofx under the basis(x1, x2i 7 10. Find the transition matrix corresponding to the change of basis from x, x2]toy,y2I 3 where x=l,x2 y 11. For each of the following matrices, find a basis for the row space (iJ/a]), a basis for the column space(列空间), and a basis for the null space(零空间={x|Ax=0}) of A. The subspace of rx by the column vectors of A is called the column space ot Mac (If A is an m Xnmatrix, the subspace of r by the row vectors of A is called the row sp A =-2 36 2)A=3256 3)A=3256 12. *Generate 10X 10, 100 X 100, 1000 X 1000 random matrices, and corresponding column vectors. Compare the time used in solving linear system Ax = b by different functions or operators such as inv, \ lu and qr.(Refer to Lecture 3) Help Select Matlab Help in the toolbar, then select Index and input gr( and lu )to see different usage of these functions, understand what meaning of [L, U, P]= lu(A,0.0); [L, U, P]=lu(A, 1.0) Q, RI=qr(A, 0) tic, operation, toc prints the number of seconds required for the operation Ex3-2
MATLAB Exercise 3 School of Mathematical Sciences Xiamen University http://gdjpkc.xmu.edu. Ex32 3) What is the dimension of Span ( 1 2 3 x , x , x )? 4) Give a geometric description of Span ( 1 2 3 x , x , x ). 7. The vectors 1 2 3 4 5 1 3 0 2 1 2 , 4 , 10 , 7 , 3 3 2 11 3 2 x x x x x Ê - ˆ Ê ˆ Ê ˆ Ê ˆ Ê - ˆ Á ˜ Á ˜ Á ˜ Á ˜ Á ˜ = = = = = Á ˜ Á ˜ Á ˜ Á ˜ Á ˜ Á ˜ Á ˜ Á ˜ Á ˜ Á ˜ Ë ¯ Ë ¯ Ë ¯ Ë ¯ Ë ¯ Span R 3 . Pare down the set 1 2 3 4 5 x , x , x , x , x to form a basis for R3 . 8. Let 1 2 3 1 10 , , 2 3 7 x x x Ê ˆ Ê ˆ Ê ˆ = Á ˜ = Á ˜ = Á ˜ Ë ¯ Ë ¯ Ë ¯ . Find the coordinates (坐标) of x with respect to 1 2 x , x . (i.e. A=(x1,x2), the coordinates of x with respect to 1 2 x , x is c=A 1 x). 9. Let 1 2 2 1 , 4 3 x x Ê ˆ Ê ˆ = Á ˜ = Á ˜ Ë ¯ Ë ¯ be a basis of R2 . Find the transition matrix from the standard basis {e1, e2} to the basis {x1, x2} and determine the coordinates of 10 7 x Ê ˆ = Á ˜ Ë ¯ under the basis {x1, x2}. 10. Find the transition matrix corresponding to the change of basis from 1 2 [x , x ]to 1 2 [y , y ], where 1 2 2 1 , 4 3 x x Ê ˆ Ê ˆ = Á ˜ = Á ˜ Ë ¯ Ë ¯ , 1 2 1 3 , 2 4 y y Ê- ˆ Ê ˆ = Á ˜ = Á ˜ Ë ¯ Ë ¯ . (X 1 Y) 11. For each of the following matrices, find a basis for the row space(行空间), a basis for the column space(列空间), and a basis for the null space (零空间={x | Ax = 0}). (If A is an m×n matrix, the subspace of R1×n by the row vectors of A is called the row space of A. The subspace of Rm×1 by the column vectors of A is called the column space of A.) 1) 1 2 3 2 3 6 9 4 6 A Ê ˆ Á ˜ = - Á ˜ Á ˜ Ë ¯ 2) 1 2 1 0 3 2 5 6 2 2 0 4 A Ê - ˆ Á ˜ = Á ˜ Á ˜ - Ë ¯ 3) 1 2 1 0 3 2 5 6 2 0 6 6 A Ê - ˆ Á ˜ = Á ˜ Á ˜ Ë ¯ 12. *Generate 10×10, 100×100, 1000×1000 random matrices, and corresponding column vectors. Compare the time used in solving linear system Ax = b by different functions or operators such as inv, \, lu and qr. (Refer to Lecture 3) Help Select Matlab Help in the toolbar, then select Index and input qr ( and lu )to see different usage of these functions, understand what meaning of [L,U,P] = lu(A,0.0); [L,U,P] = lu(A,1.0); [Q,R] = qr(A,0) . tic, operation, toc prints the number of seconds required for the operation
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 厦门大学数学科学学院:《高等代数》课程教学资源(应用与实验)MATLAB Ex 2 - Solving Linear Systems of Equations.pdf
- 厦门大学数学科学学院:《高等代数》课程教学资源(应用与实验)MATLAB Ex 1 - Matrices & Arrays.pdf
- 厦门大学数学科学学院:《高等代数》课程教学资源(应用与实验)MATLAB Lecture 9 - Graphics-Surface.pdf
- 厦门大学数学科学学院:《高等代数》课程教学资源(应用与实验)MATLAB Lecture 8 - Graphics-Curve.pdf
- 厦门大学数学科学学院:《高等代数》课程教学资源(应用与实验)MATLAB Lecture 7 - Calculus.pdf
- 厦门大学数学科学学院:《高等代数》课程教学资源(应用与实验)MATLAB Lecture 6 - Polynomial.pdf
- 厦门大学数学科学学院:《高等代数》课程教学资源(应用与实验)MATLAB Lecture 5 - Symbol Computation.pdf
- 厦门大学数学科学学院:《高等代数》课程教学资源(应用与实验)MATLAB Lecture 4 - Eigenvalue.pdf
- 厦门大学数学科学学院:《高等代数》课程教学资源(应用与实验)MATLAB Lecture 3 - Linear space.pdf
- 厦门大学数学科学学院:《高等代数》课程教学资源(应用与实验)MATLAB Lecture 2 - Solving Linear Systems of Equations.pdf
- 厦门大学数学科学学院:《高等代数》课程教学资源(应用与实验)MATLAB Lecture 1 - Matrices & Arrays.pdf
- 厦门大学数学科学学院:《高等代数》课程教学资源(应用与实验)线性空间应用——炼油厂模型(矩阵与线性方程组).pdf
- 厦门大学数学科学学院:《高等代数》课程教学资源(应用与实验)矩阵应用——投入产出方法选介(矩阵方程).pdf
- 厦门大学数学科学学院:《高等代数》课程教学资源(应用与实验)行列式应用——行列式在空间解析几何中的应用.pdf
- 厦门大学数学科学学院:《高等代数》课程教学资源(应用与实验)行列式应用——欧拉四面体问题.pdf
- 厦门大学数学科学学院:《高等代数》课程教学资源(应用与实验)行列式应用——三角形面积的行列式公式.pdf
- 厦门大学数学科学学院:《高等代数》课程教学资源(考研竞赛题选)Harvard-MIT Mathematics Tournament 2003-2008.pdf
- 厦门大学数学科学学院:《高等代数》课程教学资源(大学数学竞赛题选)第二届全国大学生数学竞赛决赛试卷(非数学类2011).pdf
- 厦门大学数学科学学院:《高等代数》课程教学资源(大学数学竞赛题选)第二届全国大学生数学竞赛决赛试卷(数学类2011).pdf
- 厦门大学数学科学学院:《高等代数》课程教学资源(大学数学竞赛题选)第三届全国大学生数学竞赛预赛试题参考答案及评分标准(非数学类 2011).pdf
- 厦门大学数学科学学院:《高等代数》课程教学资源(应用与实验)MATLAB Ex 4 - Eigenvalue.pdf
- 厦门大学数学科学学院:《高等代数》课程教学资源(应用与实验)MATLAB Ex 5 - Symbol Computation.pdf
- 厦门大学数学科学学院:《高等代数》课程教学资源(应用与实验)MATLAB Ex 6 - Polynomial.pdf
- 厦门大学数学科学学院:《高等代数》课程教学资源(应用与实验)MATLAB Ex 7 - Calculus.pdf
- 厦门大学数学科学学院:《高等代数》课程教学资源(应用与实验)MATLAB Ex 8 - Graphics-Curve.pdf
- 厦门大学数学科学学院:《高等代数》课程教学资源(应用与实验)MATLAB Ex 9 - Graphics-Surface.pdf
- 厦门大学数学科学学院:《高等代数》课程教学资源(应用与实验)Key to MATLAB Ex 1 - Matrices & Arrays.pdf
- 厦门大学数学科学学院:《高等代数》课程教学资源(应用与实验)Key to MATLAB Ex 2 - Solving Linear Systems of Equations.pdf
- 厦门大学数学科学学院:《高等代数》课程教学资源(应用与实验)Key to MATLAB Ex 3 - Linear Space(10).pdf
- 厦门大学数学科学学院:《高等代数》课程教学资源(应用与实验)Key to MATLAB Ex 4 - Eigenvalue.pdf
- 厦门大学数学科学学院:《高等代数》课程教学资源(应用与实验)Key to MATLAB Ex 5 - Symbol Computation.pdf
- 厦门大学数学科学学院:《高等代数》课程教学资源(应用与实验)Key to MATLAB Ex 6 - Polynomial.pdf
- 厦门大学数学科学学院:《高等代数》课程教学资源(应用与实验)Key to MATLAB Ex 7 - Calculus.pdf
- 厦门大学数学科学学院:《高等代数》课程教学资源(应用与实验)Key to MATLAB Ex 8 - Graphics-Curve.pdf
- 厦门大学数学科学学院:《高等代数》课程教学资源(应用与实验)Key to MATLAB Ex 9 - Graphics-Surface.pdf
- 厦门大学数学科学学院:《高等代数》课程教学资源(方法选讲,打印版)第一章 一元多项式.pdf
- 厦门大学数学科学学院:《高等代数》课程教学资源(方法选讲,打印版)第四章 线性空间.pdf
- 厦门大学数学科学学院:《高等代数》课程教学资源(方法选讲,打印版)第六章 线性方程组.pdf
- 厦门大学数学科学学院:《高等代数》课程教学资源(方法选讲,打印版)第九章 特征值和特征向量.pdf
- 厦门大学数学科学学院:《高等代数》课程教学资源(方法选讲,打印版)第十一章 欧氏空间.pdf