《电路》(英文版)4-1 the inductor

84-1 the inductor A current-carrying conductor produced a magnetic field(1800°) A changing magnetic field could induce a voltage in a neigh boring circuit(1820) q .DEL +D(t) dr p= Li dt (L→>pN2A/s) L--inductance(H)
§4-1 the inductor A current-carrying conductor produced a magnetic field (1800’). A changing magnetic field could induce a voltage in a neighboring circuit (1820’). dt di Li L dt d = = = L--inductance (H) ( L N A / s) 2 → + (t) − i(t) L

The electrical characteristics (1)Inductor as a"short circuit to DC"; (2)We can not permit an inductor current to change suddenly. i(t)3H +D() i(4) i(4) r(s)-01 t(s) t(s) 22 AUC ▲D ( 30 t(s) t(s) pulses impulses 脉冲 冲激
The electrical characteristics: dt di = L i(A) t(s) 0 1 2 1 i(A) t(s) 0 1 2 1 − 1 3 i(A) t(s) 0 1 2 1 − 0.1 2.1 (V ) t(s) 0 1 2 pulses 30 + (t) − i(t) 3H (1) A inductor as a ''short circuit to DC"; (V ) t(s) 0 1 2 pulses 3 脉冲 (V ) t(s) 0 1 2 impulses 冲激 (2) We can not permit an inductor current to change suddenly

Ldi di dt i(t) DdT i(t)-i(t0) DdT i(to L or i(t)=i(to)+odt i(to)--initial current L 0 Let: to =0 and t (0+=0=0) 0 Udt+i(0)→>i(0)=i(0) L J0 0 The current, which flows through a linear time-invariant inductor, must always be a continuous function
d i t initial current L or i t i t t t = + − − ( ) 1 ( ) ( ) 0 0 0 − + Let : t 0 = 0 and t = 0 The current, which flows through a linear time-invariant inductor, must always be a continuous function. = i( t ) i( t ) t t d L di 0 0 1 − = t t d L i t i t 0 1 ( ) ( ) 0 dt L di 1 = dt di = L + 0 − 0 0 t 0 (0 ) (0 ) (0 ) 1 (0 ) 0 0 + − + − = + → = + − dt i i i L i ( ) + − 0 = 0 = 0

The power p(accepted) by the inductor i P=u= Li dt The energy W(t) i i(t) dw,=l pdt=Ll idt=Ll idi=Li(t)-i(to) HL(0) dt i(to) 2 Or w1(t)-w(t0)=L{i(t)-i(t0) 2 J:i(t0)=0w1(t)=L 2
The power p (accepted) by the inductor: The energy : dt di p =i = Li { ( ) ( )} 2 1 0 2 2 ( ) ( ) ( ) ( ) 0 0 0 0 dt L idi L i t i t dt di dw pdt L i i t i t t t w t w t t t L L L = = = = − 2 0 2 1 If : i(t ) 0 w ( t ) Li = L = w ( t ) w ( t ) L{ i ( t ) i ( t )} or L L 0 2 2 0 2 1 − = −

Some of important characteristics of a inductor are now apparent: 1. There is no voltage across an inductor if the current through it is not changing with time, An inductance is therefore a short circuit to dc 2. A finite amount of energy can be stored in an inductor even if the voltage across the inductance is zero such as when the current through it is constant
Some of important characteristics of a inductor are now apparent: 1. There is no voltage across an inductor if the current through it is not changing with time, An inductance is therefore a short circuit to dc. 2. A finite amount of energy can be stored in an inductor even if the voltage across the inductance is zero such as when the current through it is constant

3. It is impossible to change the current through an inductor by a finite amount in zero time for this requires an infinite voltage across the inductor. It will be advantageous later to hypothesize that such a voltage may be generated or applied to an inductor, but for the present we shall avoid such a forcing (Fh) function or response (HaM) An inductor resists an abrupt change in the current through it in a manner analogous to the way a mass resists an abrupt change in its velocity 4. The inductor never dissipated energy, but only stores it. Although this is true for the mathematical model, it is not true for a physical inductor
An inductor resists an abrupt change in the current through it in a manner analogous to the way a mass resists an abrupt change in its velocity. 3. It is impossible to change the current through an inductor by a finite amount in zero time, for this requires an infinite voltage across the inductor. 4. The inductor never dissipated energy, but only stores it. Although this is true for the mathematical model, it is not true for a physical inductor. It will be advantageous later to hypothesize that such a voltage may be generated or applied to an inductor, but for the present we shall avoid such a forcing (激励) function or response (响应)An inductor resists an abrupt change in the . current through it in a manner analogous to the way a mass resists an abrupt change in its velocity

Drill problem 1 Find i(0+)and D,(0*),(0+) t○pen=0 n05 20 (0) ①al000b i08 i(0+)=i0)=12A U1(01)=-24-36=-60 (0)=-3Q
Drill problem 1: Find i (0 + ) and (0 ), . + L (0 ) 1 + R R1 (0 ) = −36V + L (0 ) = −24− 36 = −60V + i(0+ )= i(0- )=1.2A V 24 0 3 − + (t) L 0 2 − + ( ) 1 t R mH 50 i − + + ( ) L 0 − + + ( ) R 0 1 i( ) + 0 20 30
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《电路》(英文版)3-4 Analog addition and subtraction.ppt
- 《电路》(英文版)3-3 Voltage follower(跟随器)(or isolator隔离器).ppt
- 《电路》(英文版)3-2 op-am—— resistor circuits.ppt
- 《电路》(英文版)3-1 The OP-amp.ppt
- 《电路》(英文版)2-5 Maximum power transfer in the DC case.ppt
- 《电路》(英文版)2-4 Thevenin's and Norton's theorems.ppt
- 《电路》(英文版)2-3 Linearity and superposition.ppt
- 《电路》(英文版)2-2 mesh(网孔) analysis.ppt
- 《电路》(英文版)2-1 Nodal analysis.ppt
- 《电路》(英文版)1-7 voltage and current division.ppt
- 《电路》(英文版)1-6 source transformations.ppt
- 《电路》(英文版)1-5 Network reduction by A-Y transformation.ppt
- 《电路》(英文版)1-4 Resistance and Source combination.ppt
- 《电路》(英文版)1-3 Kirchhoff s laws.ppt
- 《电路》(英文版)1-2hm'slaw.ppt
- 《电路》(英文版)1-1 Introduction.ppt
- 中国科学院院:《自动控制的若干问题》讲义.ppt
- 科学出版社:《自动控制理论》课程教材(第四版)教学资源(PPT讲课件稿)第四章 线性系统的根轨迹法.ppt
- 科学出版社:《自动控制理论》课程教材(第四版)教学资源(PPT讲课件稿)第六章 线性系统的校正方法.ppt
- 科学出版社:《自动控制理论》课程教材(第四版)教学资源(PPT讲课件稿)第八章 非线性控制系统分析.ppt
- 《电路》(英文版)4-2 The capacitor.ppt
- 《电路》(英文版)4-3 Inductance and capacitance combinations.ppt
- 《电路》(英文版)4-4 Duality(对偶性).ppt
- 《电路》(英文版)4-5 Simple capacitor-OP-AMP-circuits.ppt
- 《电路》(英文版)5-1 The unit-s-step(阶跃) forcing function.ppt
- 《电路》(英文版)5-2 The source-free RL circuit.ppt
- 《电路》(英文版)5-3 The source-free RC circuit.ppt
- 《电路》(英文版)5-4 The driven RL circuit.ppt
- 《电路》(英文版)5-5 The driver RC circuit.ppt
- 《电路》(英文版)6-1The source-free parallel circuit.ppt
- 《电路》(英文版)6-2 The source-free series circuit.ppt
- 《电路》(英文版)6-3 The complete response of the RLC.ppt
- 《电路》(英文版)7-1 Characteristics of sinusoids.ppt
- 《电路》(英文版)7-2 Forced response to sinusoidal forcing functions.ppt
- 《电路》(英文版)7-3 Effective values of current and voltage.ppt
- 《电路》(英文版)7-4 The complex forcing function.ppt
- 《电路》(英文版)7-5 The phasor(相量).ppt
- 《电路》(英文版)7-6 Phasor relationships for、and R:.ppt
- 《电路》(英文版)7-7 Impedance.ppt
- 《电路》(英文版)8-1 Nodal, mesh and loop analysis Nodal analysis.ppt