《电路》(英文版)7-1 Characteristics of sinusoids

87-1 Characteristics of sinusoids V sin ot y sin ot Vn-- amplitude(振幅 兀 a-- arg ument(幅角) T--period (T=1/f,OT=2丌,O=2m) f--frequency A more general form of the sinusoid @--angular frequency 丿 sin at u=Vm sin(at +9 (at +9)--arg ument V sin(at+gy 9--phase angle 「 v sin((or+9) leads(超前)V sin at by raa, orv sin at lags(滞后)nsin(or+9b9rad
§7-1 Characteristics of sinusoids f frequency T period − − − − V amplitude(振幅) m − − t − −argument(幅角) − −angular frequency t 2 V t m sin Vm 0 (T = 1/ f ,T = 2 , = 2f ) t 2 V t m sin V sin(t +) m 0 A more general form of the sinusoid phase angle ( t ) arg ument − − + − − =Vm sin(t +) sin sin( ) . sin( ) sin , or V t lags V t by rad V t leads V t by rad m m m m + + (滞后) (超前) =Vm sint

In either case, leading or lagging, we say that sinusoids are out ofphase (F#8), if phase angles equal they are said to be in phase(同相) U=220sim(314t-/6→U=220si314t-30°)y Two sinusoidal waves that are to be compared in phase must written as sine-waves, or both as cosine-waves. both waves must be written with positive amplitudes, and each must be of the same frequency. sin(5t-30°) leads v by-130 U2=V2mcos(5t+10°) orU1lgsU,b+130° Vm sin(5t +100) Normally, the difference in phase between two sinusoids is expressed by that angle which is less than or equal to 1800 in magnitude
In either case, leading or lagging, we say that sinusoids are out of phase(异相), if phase angles equal they are said to be in phase(同相). 220sin(314t / 6)V 220sin(314t 30 )V = − → = − Two sinusoidal waves that are to be compared in phase must written as sine-waves, or both as cosine-waves, both waves must be written with positive amplitudes, and each must be of the same frequency. sin(5 30 ) 1 1 =V m t − cos(5 10 ) 2 2 =V m t + sin(5 100 ) 2 =V m t + 130 130 1 2 1 2 + − or lags by leads by Normally, the difference in phase between two sinusoids is expressed by that angle which is less than or equal to 180o in magnitude
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《电路》(英文版)6-3 The complete response of the RLC.ppt
- 《电路》(英文版)6-2 The source-free series circuit.ppt
- 《电路》(英文版)6-1The source-free parallel circuit.ppt
- 《电路》(英文版)5-5 The driver RC circuit.ppt
- 《电路》(英文版)5-4 The driven RL circuit.ppt
- 《电路》(英文版)5-3 The source-free RC circuit.ppt
- 《电路》(英文版)5-2 The source-free RL circuit.ppt
- 《电路》(英文版)5-1 The unit-s-step(阶跃) forcing function.ppt
- 《电路》(英文版)4-5 Simple capacitor-OP-AMP-circuits.ppt
- 《电路》(英文版)4-4 Duality(对偶性).ppt
- 《电路》(英文版)4-3 Inductance and capacitance combinations.ppt
- 《电路》(英文版)4-2 The capacitor.ppt
- 《电路》(英文版)4-1 the inductor.ppt
- 《电路》(英文版)3-4 Analog addition and subtraction.ppt
- 《电路》(英文版)3-3 Voltage follower(跟随器)(or isolator隔离器).ppt
- 《电路》(英文版)3-2 op-am—— resistor circuits.ppt
- 《电路》(英文版)3-1 The OP-amp.ppt
- 《电路》(英文版)2-5 Maximum power transfer in the DC case.ppt
- 《电路》(英文版)2-4 Thevenin's and Norton's theorems.ppt
- 《电路》(英文版)2-3 Linearity and superposition.ppt
- 《电路》(英文版)7-2 Forced response to sinusoidal forcing functions.ppt
- 《电路》(英文版)7-3 Effective values of current and voltage.ppt
- 《电路》(英文版)7-4 The complex forcing function.ppt
- 《电路》(英文版)7-5 The phasor(相量).ppt
- 《电路》(英文版)7-6 Phasor relationships for、and R:.ppt
- 《电路》(英文版)7-7 Impedance.ppt
- 《电路》(英文版)8-1 Nodal, mesh and loop analysis Nodal analysis.ppt
- 《电路》(英文版)8-2 Superposition, source transformation and Thevenin's theorem.ppt
- 《电路》(英文版)8-3 Phasor diagrams.ppt
- 《电路》(英文版)9-1 Instantaneous power.ppt
- 《电路》(英文版)9-2 Average power.ppt
- 《电路》(英文版)9-3 Apparent power and power factor.ppt
- 《电路》(英文版)9-4 Complex power.ppt
- 《电路》(英文版)9-5 Maximum power transfer in the AC case.ppt
- 《电路》(英文版)10-1 Parallel resonance(谐振).ppt
- 《电路》(英文版)10-2 Series resonance.ppt
- 《电路》(英文版)10-3 Other resonant forms.ppt
- 《电路》(英文版)11-1 Mutual inductance.ppt
- 《电路》(英文版)11-2 The linear transformer.ppt
- 《电路》(英文版)11-3 The ideal transformer.ppt