《电路》(英文版)5-1 The unit-s-step(阶跃) forcing function

§5-1 The unit-step(阶跃) forcing function We define the unit-step forcing function as a function which is zero for all values of argument which are less than zero and which is unity (1) for all positive values of ts argument u(r) 0x0 0 We must express the forcing function as a function of time u(t) 0t0
§5-1 The unit-step (阶跃) forcing function We define the unit-step forcing function as a function which is zero for all values of argument which are less than zero and which is unity (1) for all positive values of its argument. = 1 0 0 0 ( ) x x u x We must express the forcing function as a function of time. = 1 0 0 0 ( ) t t u t u(t) 1 0 t 0 u( x) x 1

The late(延迟)unit- step forcing function: u(t-t) 0 t to The unit-step forcing function is in itself dimensionless (GA A). If we wish it to represent a voltage, it is necessary to multiply u(t-to) by some constant voltage, such as v. Thus v(o=Vu(t-to) an ideal voltage source which is zero before tto and a constant v aftertto If we wish it to represent a current, it is necessary to multiply u(t-to) by some constant current, such as 1. Thus i(t=u(t-to) is an ideal current source which is zero before tto and a constant l after tto
The late (延迟) unit-step forcing function: − = 0 0 0 1 0 ( ) t t t t u t t ( )0 u t − t 1 0 t t 0 If we wish it to represent a current, it is necessary to multiply u(t-t0 ) by some constant current, such as I. Thus i(t)=Iu(t-t0 ) is an ideal current source which is zero before t=t0 and a constant I after t=t0 . The unit-step forcing function is in itself dimensionless (无量 纲). If we wish it to represent a voltage, it is necessary to multiply u(t-t0 ) by some constant voltage, such as V. Thus v(t)=Vu(t-t0 ) an ideal voltage source which is zero before t=t0 and a constant V after t=t0

The rectangular voltage pulse u(t) 0 tt, r1 D(t)=yu(t-t)-yu(t-t) to(0) u(t-to) 0 (t-t1)
The rectangular voltage pulse: (t) V 0 0 t 1 t t (t) V 0 0 t 1 t t −V ( )0 Vu t − t ( )1 −Vu t − t = 1 0 1 0 0 0 ( ) t t V t t t t t t ( ) ( ) ( ) 0 1 t =Vu t − t −Vu t − t ( )1 −Vu t − t ( )0 Vu t − t − + − +
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《电路》(英文版)4-5 Simple capacitor-OP-AMP-circuits.ppt
- 《电路》(英文版)4-4 Duality(对偶性).ppt
- 《电路》(英文版)4-3 Inductance and capacitance combinations.ppt
- 《电路》(英文版)4-2 The capacitor.ppt
- 《电路》(英文版)4-1 the inductor.ppt
- 《电路》(英文版)3-4 Analog addition and subtraction.ppt
- 《电路》(英文版)3-3 Voltage follower(跟随器)(or isolator隔离器).ppt
- 《电路》(英文版)3-2 op-am—— resistor circuits.ppt
- 《电路》(英文版)3-1 The OP-amp.ppt
- 《电路》(英文版)2-5 Maximum power transfer in the DC case.ppt
- 《电路》(英文版)2-4 Thevenin's and Norton's theorems.ppt
- 《电路》(英文版)2-3 Linearity and superposition.ppt
- 《电路》(英文版)2-2 mesh(网孔) analysis.ppt
- 《电路》(英文版)2-1 Nodal analysis.ppt
- 《电路》(英文版)1-7 voltage and current division.ppt
- 《电路》(英文版)1-6 source transformations.ppt
- 《电路》(英文版)1-5 Network reduction by A-Y transformation.ppt
- 《电路》(英文版)1-4 Resistance and Source combination.ppt
- 《电路》(英文版)1-3 Kirchhoff s laws.ppt
- 《电路》(英文版)1-2hm'slaw.ppt
- 《电路》(英文版)5-2 The source-free RL circuit.ppt
- 《电路》(英文版)5-3 The source-free RC circuit.ppt
- 《电路》(英文版)5-4 The driven RL circuit.ppt
- 《电路》(英文版)5-5 The driver RC circuit.ppt
- 《电路》(英文版)6-1The source-free parallel circuit.ppt
- 《电路》(英文版)6-2 The source-free series circuit.ppt
- 《电路》(英文版)6-3 The complete response of the RLC.ppt
- 《电路》(英文版)7-1 Characteristics of sinusoids.ppt
- 《电路》(英文版)7-2 Forced response to sinusoidal forcing functions.ppt
- 《电路》(英文版)7-3 Effective values of current and voltage.ppt
- 《电路》(英文版)7-4 The complex forcing function.ppt
- 《电路》(英文版)7-5 The phasor(相量).ppt
- 《电路》(英文版)7-6 Phasor relationships for、and R:.ppt
- 《电路》(英文版)7-7 Impedance.ppt
- 《电路》(英文版)8-1 Nodal, mesh and loop analysis Nodal analysis.ppt
- 《电路》(英文版)8-2 Superposition, source transformation and Thevenin's theorem.ppt
- 《电路》(英文版)8-3 Phasor diagrams.ppt
- 《电路》(英文版)9-1 Instantaneous power.ppt
- 《电路》(英文版)9-2 Average power.ppt
- 《电路》(英文版)9-3 Apparent power and power factor.ppt