《电路》(英文版)2-1 Nodal analysis

§2-1 Nodal analysis 5Q 34 2 24 Ref Re∫ We select one node as a reference node and then define a voltage between each remaining node and the reference node We must apply kcl to nodes 1 and 2 65 a×2 0.7U1-0.2U2=3 U1=5)bsg=0.54 -0.201+.22=2U2=25P3A=5×3=15W 十
§2-1 Nodal analysis We must apply KCLto nodes 1 and 2 − + = − = 0 2 1 2 2 0 7 0 2 3 1 2 1 2 . . . . or We select one node as a reference node, and then define a voltage between each remaining node and the reference node. = − − − + = − + ( 2 ) 1 5 3 2 5 2 2 1 1 1 2 = = . V V 2 5 5 2 1 P W i . A A 5 3 15 0 5 3 5 = = = Re f 1 2 3A − 2A 2 1 5 1 Re f 2 3A − 2A 2 1 i 5 5

Now let us increase the number of nodes by one 4S nodel:3(u1-U2)+4U1-u3)=-8-3 7U1-3U2-4U3=-11 2S nde2:3(u2-u1)+2(2-U3)+12=3 8A -3U,+6U,-2U2=3 IS ode 5U3+2{U3-U2)+4(U3-01)=25 254 r-4U,-20,+11U,=25 Ref By cramer s rule and determinants, we have 11-3-4 25 211191 2 L 3-4191 36 211
2 : 3( ) 2( ) 1 3 node 2 −1 + 2 − 3 + 2 = 3 : 5 2( ) 4( ) 25 node 3 + 3 −2 + 3 −1 = 7 3 4 11 or 1 − 2 − 3 = − 3 6 2 3 or − 1 + 2 − 3 = 4 2 11 25 or − 1 − 2 + 3 = By Cramer' s rule and determinants, we have 1 191 191 4 2 11 3 6 2 7 3 4 25 2 11 3 6 2 11 3 4 1 = = − − − − − − − − − − − = 2 = 2 and 3 = 3 Now let us increase the number of nodes by one. 1 3 4 8 3 node : (1 − 2 )+ (1 − 3 ) = − − 1 2 3 − 25A −8A − 3A 1S 5S 4S 3S 2S Re f

R4 000V 3000V 2 0.25 ) 000V R1-3A R5 0.3333 0.5 个 R2 R3 3 8A 0.2 25A M 0
I 1 -8A R 4 0.25 R 2 1 3.000V 2.000V I 2 -3A R 5 0.5 R 1 0.3333 1.000V R 3 0.2 0V 0 I 3 -25A

nodl:3(U1-U2)+4(b1-U3)=-8-3 D,-5N+ orTu1-3U2-4U2=-11(1 -34 3S node2:3(U2-b1)+1U2+i,-3=0 or-3U1+4U2+i=3 (2) IS node3:5U3+4(U3-U1)-i,-25=0 +9U2-i=25 3 254 2)+(3)→-+42+9=28(4) Ref D3-D2=22 (5 Equations(1),(4),(5)may be solved 11-3-4 849 22 189 =-4.5 155U3=65 3 749
22 ( 5 ) 3 − 2 = ( 2 ) ( 3 ) 7 4 9 28 ( 4 ) + − 1 + 2 + 3 = node2 : 3(2 −1 )+12 + i s − 3 = 0 node3 : 53 + 4(3 −1 )− i s − 25 = 0 7 3 4 11 (1) or 1 − 2 − 3 = − 3 4 3 (2) or − 1 + 2 + i s = 4 9 25 (3) or − 1 + 3 − i s = Equations (1), (4), (5) may be solved 4 5 42 189 0 1 1 7 4 9 7 3 4 22 1 1 28 4 9 11 3 4 1 = − . − = − − − − − − − − = 1 3 4 8 3 node : (1 − 2 )+ (1 − 3 ) = − − 2 = −15.5 3 = 6.5 − 22V + s i 1 2 3 − 25A −8A − 3A 1S 5S 4S 3S Re f

Let us summarize the method by which we obtain a set of nodal equations for any resistive circuit: 1 Make a neat, simple, circuit diagram. Indicate all element and source values. Each source should have its reference symbol 2. Assuming that the circuit has N nodes, choose one of these nodes as a reference node. Then write node voltages v1, V2,.WN-I at their respective nodes, remembering that each node voltage is under-stood to be measured with respect to the chosen reference
1 .Make a neat, simple, circuit diagram. Indicate all element and source values. Each source should have its reference symbol. 2. Assuming that the circuit has N nodes, choose one of these nodes as a reference node. Then write node voltages v1 , v2 ,…vN-1 at their respective nodes, remembering that each node voltage is under-stood to be measured with respect to the chosen reference. Let us summarize the method by which we obtain a set of nodal equations for any resistive circuit:

3. If the circuit contains only current sources, apply Kirchhoff 's current law at each non-reference node. to obtain the conductance matrix if a circuit has only independent current sources, equate the total current leaving each node through all conductance to the total source current entering that node, and order the terms from v, to VN-1. For each dependent current source present, relate the source current and the controlling quantity to the variables vi, v2,..., VN-1, if they are not already in that form
3. If the circuit contains only current sources, apply Kirchhoff 's current law at each non-reference node. To obtain the conductance matrix if a circuit has only independent current sources, equate the total current leaving each node through all conductance to the total source current entering that node, and order the terms from v1 to vN-1. For each dependent current source present, relate the source current and the controlling quantity to the variables v1 , v2 ,…,vN -1 , if they are not already in that form

4.If the circuit contains voltage sources, temporaril modify the given circuit by replacing each such source by a short circuit, thus reducing the number of nodes by one for each voltage source that is present. The assigned node voltages should not be changed Using these assigned node-to-reference voltage, apply Kirchhoff s current law at each of the nodes or super- nodes in this modified circuit. Relate each source voltage to the variables vi, v2,..., VN-I, if it is not already in that form
4.If the circuit contains voltage sources, temporarily modify the given circuit by replacing each such source by a short circuit, thus reducing the number of nodes by one for each voltage source that is present. The assigned node voltages should not be changed. Using these assigned node-to-reference voltage, apply Kirchhoff ' s current law at each of the nodes or supernodes in this modified circuit. Relate each source voltage to the variables v1 , v2 ,…,vN-1 , if it is not already in that form

Example 2: (A)IfX=2S. Find the power supplied by the 10A source (B)lfX10k, Find the power supplied by the 10A source; (C=v 3. Find vi; DD)IfX=4v 3. Find vr 3v1-2v,-v2=10 Solution (4){-2v1+9v2-3v3=0 1-3v2+6v3=20 2S 0. 3S v1=25/3 3 20A Po4=v1×10=83.3W 10A (B)v3=10V,v1=144 4S 4v,/3 P,=144W (C)v3=v1/3,v1=4.3 (D)1(v3-v1)+3(v3-v2)=20+4v1/3,v1=23.8V
Example 2 : (A) If X=2S.Find the power supplied by the 10A source; (B) If X=10V, Find the power supplied by the 10A source; (C) If X=v1 /3. Find v1 ; (D)If X= 4v1 /3. Find v1 . Solution: v1 = 25/ 3 P10A = v1 10 = 83.3W − − + = − + − = − − = 3 6 20 2 9 3 0 3 2 10 1 2 3 1 2 3 1 2 3 v v v v v v v v v (A) v3 = 10V,v1 = 14.4 P10A = 144W (B) / 3, 4.3 (C) v3 = v1 v1 = X 2 (D) 1(v3 − v1 )+ 3(v3 − v2 ) = 20+ 4v1 / 3,v1 = 23.8V − 10V ++ − / 3 1 v 4 / 3 1 v

DP: use nodal analysis to find Ux if element (A) X)2A (B)X→89 (C)X→10V(-+) 10 D D 2 94 6 2 174 Re∫ (4)→>42 (B)→>24 (C)→-19.61
DP: use nodal analysis to find if element X (C ) X V( ) ( B ) X ( A) X A → − + → → 10 8 2 (A) → 42V (B) → 24V (C) → −19.6V 1 9A 17A 6 4 2 2 − + x Re f . X 2A 8 10V − +

DP-2: Find: V1,v2, V3 2 02-D1⊥b2⊥b3-0 +2 1A+ A 2 5 1,U2=3,U3=-2 (与电流源串联的电阻不介入节点方程) R Find: P2v =lA P=2w Find: p U2A=0P4=0
1 2 3 DP − 2 :Find : v ,v ,v 5 2 − 3 = 1, 3, 2 1 = 2 = 3 = − (与电流源串联的电阻不介入节点方程) Find:P2V . Find: P2A. i 1 = 1A P2V = 2W 2A = 0 P2A = 0 2 1 1 1 1 1 2 1 3 = − + − + 2 1 1 1 2 1 2 3 1 = − + + − − + 2V 2A 1 1 1 1 1 1 i − + 2A + 5V − 1 2 3 Re f
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《电路》(英文版)1-7 voltage and current division.ppt
- 《电路》(英文版)1-6 source transformations.ppt
- 《电路》(英文版)1-5 Network reduction by A-Y transformation.ppt
- 《电路》(英文版)1-4 Resistance and Source combination.ppt
- 《电路》(英文版)1-3 Kirchhoff s laws.ppt
- 《电路》(英文版)1-2hm'slaw.ppt
- 《电路》(英文版)1-1 Introduction.ppt
- 中国科学院院:《自动控制的若干问题》讲义.ppt
- 科学出版社:《自动控制理论》课程教材(第四版)教学资源(PPT讲课件稿)第四章 线性系统的根轨迹法.ppt
- 科学出版社:《自动控制理论》课程教材(第四版)教学资源(PPT讲课件稿)第六章 线性系统的校正方法.ppt
- 科学出版社:《自动控制理论》课程教材(第四版)教学资源(PPT讲课件稿)第八章 非线性控制系统分析.ppt
- 科学出版社:《自动控制理论》课程教材(第四版)教学资源(PPT讲课件稿)第五章 线性系统的频域分析法 5-2 频率特性 5-3 典型环节和开环系统频率特性的极坐标图.ppt
- 科学出版社:《自动控制理论》课程教材(第四版)教学资源(PPT讲课件稿)第五章 线性系统的频域分析法 5-4 典型环节和开环系统频率特性的对数坐标图.ppt
- 科学出版社:《自动控制理论》课程教材(第四版)教学资源(PPT讲课件稿)第二章 控制系统的数学模型.ppt
- 科学出版社:《自动控制理论》课程教材(第四版)教学资源(PPT讲课件稿)第三章 线性系统的时域分析法.ppt
- 科学出版社:《自动控制理论》课程教材(第四版)教学资源(PPT讲课件稿)第七章 线性离散系统的分析与校正.ppt
- 科学出版社:《自动控制理论》课程教材(第四版)教学资源(PPT讲课件稿)第一章 自动控制的一般概念.ppt
- 《化工自动化仪表》课程教学资源(PPT课件讲稿)第15章 典型化工单元的控制方案.ppt
- 《化工自动化仪表》课程教学资源(PPT课件讲稿)第14章 计算机控制系统.ppt
- 《化工自动化仪表》课程教学资源(PPT课件讲稿)第13章 高级控制系统.ppt
- 《电路》(英文版)2-2 mesh(网孔) analysis.ppt
- 《电路》(英文版)2-3 Linearity and superposition.ppt
- 《电路》(英文版)2-4 Thevenin's and Norton's theorems.ppt
- 《电路》(英文版)2-5 Maximum power transfer in the DC case.ppt
- 《电路》(英文版)3-1 The OP-amp.ppt
- 《电路》(英文版)3-2 op-am—— resistor circuits.ppt
- 《电路》(英文版)3-3 Voltage follower(跟随器)(or isolator隔离器).ppt
- 《电路》(英文版)3-4 Analog addition and subtraction.ppt
- 《电路》(英文版)4-1 the inductor.ppt
- 《电路》(英文版)4-2 The capacitor.ppt
- 《电路》(英文版)4-3 Inductance and capacitance combinations.ppt
- 《电路》(英文版)4-4 Duality(对偶性).ppt
- 《电路》(英文版)4-5 Simple capacitor-OP-AMP-circuits.ppt
- 《电路》(英文版)5-1 The unit-s-step(阶跃) forcing function.ppt
- 《电路》(英文版)5-2 The source-free RL circuit.ppt
- 《电路》(英文版)5-3 The source-free RC circuit.ppt
- 《电路》(英文版)5-4 The driven RL circuit.ppt
- 《电路》(英文版)5-5 The driver RC circuit.ppt
- 《电路》(英文版)6-1The source-free parallel circuit.ppt
- 《电路》(英文版)6-2 The source-free series circuit.ppt