《电路》(英文版)2-2 mesh(网孔) analysis

§2-2Mesh(网孔) analysis Mesh analysis is applicable only to those networks, which are planar. If it is possible to draw the diagram of a circuit on a plane surface in such a way that no branch passes over or under any other branch, then that circuit is said to be a planar circuit Non -planar-circuit (Planar-circuit
Mesh analysis is applicable only to those networks, which are planar. §2-2 Mesh(网孔) analysis If it is possible to draw the diagram of a circuit on a plane surface in such a way that no branch passes over or under any other branch, then that circuit is said to be a planar circuit. (Non -planar-circuit) (Planar -circuit)

Mesh analysis. L1 )=42 L2:=3(i1-i2)+4i2=10 42J 0( 6A =44 We define a mesh current as a current. which flows onl around the perimeter of a mesh. L1:6im+3(i )=42 (1)h2少+41210 42M 0 =64 十 i= 4A a mesh current may often be identified as a branch current,(支路中只有一个网孔电流通过时,有=uand (2)
Mesh analysis: L : 6i 3(i i ) 42 1 1 + 1 − 2 = L : 3(i i ) 4i 10 2 − 1 − 2 + 2 = = = i A i A 4 6 2 1 We define a mesh current as a current, which flows only around the perimeter of a mesh. L : 6i 3(i i ) 42 1 ( 1 ) + ( 1 ) − ( 2 ) = L : 3(i i ) 4i 10 2 − ( 1 ) − ( 2 ) + ( 2 ) = = = = = i i A i i A 4 6 2 (2) 1 (1) A mesh current may often be identified as a branch current,—(支路中只有一个网孔电流通过时,有i1=i (1) and i2=i (2)) − + 42V i 1 6 4 3 2 i 3 1 2 i = i − i + − 10V L1 L2 − + 42V i 1 6 4 3 2 i 3 1 2 i = i − i + − L1 10V L2 ( ) i 1 ( ) i 2

7+1(1-i2)+6+2(1-3)=0 (2-i1)+2i2+3(2-i3)=0 2(i3-i1)-6+3(i-i2)+1i3=0 )6V +6i,-3i,=0 i1-3i2+6i3=6 1-1 06 6-36 117 3A. 2A 3=34 39 2-36
− 7 +1(i 1 − i 2 )+ 6+ 2(i 1 − i 3 ) = 0 1(i 2 − i 1 )+ 2i 2 + 3(i 2 − i 3 ) = 0 2(i 3 − i 1 )− 6+ 3(i 3 − i 2 )+1i 3 = 0 − − + = − + − = − − = 2 3 6 6 6 3 0 3 2 1 1 2 3 1 2 3 1 2 3 i i i i i i i i i or 3 . 39 117 2 3 6 1 6 3 3 1 2 6 3 6 0 6 3 1 1 2 i 1 = = A − − − − − − − − − − = i 2 = 2A i 3 = 3A 4 − + 7V 3 1 1 2 − + 6V 2 2 i 1 i 3 i

When a current source is present in the network. We should assign an unknown voltage across the current source, apply KVL around each mesh. and then relate the source current to the assigned mesh currents +1(1-i2)+v+2(i1-i3)=0(1) l(i2-i1)+2i2+3(i2-i3)=0(2) 2(i3-i1)-+3(3-i2)+li3=0(3) 7(4) (1)+(3):-7+1(1-i2)+3(i-i2)+li3=0(5) +6i,-3i=0 OI i1-42+4i3 We have: i, =9A, i, =2.54, i2=2A
When a current source is present in the network .We should assign an unknown voltage across the current source, apply KVL around each mesh, and then relate the source current to the assigned mesh currents. (1) (3): 7 1( ) 3( ) 1 0 (5) + − + i 1 − i 2 + i 3 − i 2 + i 3 = 1( ) 2 3( ) 0 (2) i 2 − i 1 + i 2 + i 2 − i 3 = 2( ) 3( ) 1 0 (3) i 3 − i 1 − v + i 3 − i 2 + i 3 = 7 (4) i 1 − i 3 = 7 1( ) 2( ) 0 (1) − + i 1 − i 2 + v + i 1 − i 3 = − + = − = − + − = 4 4 7 7 6 3 0 1 2 3 1 3 1 2 3 i i i i i i i i or We have:i1=9A, i2=2.5A,i3=2A. − + − + 7V 3 1 1 2 2 2 i 1 i 3 i A7

Let us summarize the method by which we obtain a set of mesh equations for a resistive circui 1. Make certain that the network is a planar network If it is non-planar, mesh analysis is not applicable. 2. Make a neat, simple, circuit diagram. Indicate all element and source values. Resistance values are preferable to conductance values. Each source should have its reference symbol. 3. Assuming that the circuit has m meshes, assign a clockwise current in each mesh,i1,l2,……,iv
Let us summarize the method by which we obtain a set of mesh equations for a resistive circuit: 1.Make certain that the network is a planar network. If it is non-planar, mesh analysis is not applicable. 2.Make a neat, simple, circuit diagram. Indicate all element and source values. Resistance values are preferable to conductance values. Each source should have its reference symbol. 3. Assuming that the circuit has M meshes, assign a clockwise current in each mesh, i1 , i2 , …, iM

4. If the circuit contains only voltage sources, apply Kirchhoff 's voltage law around each mesh. To obtain the resistance matrix if a circuit has only independent voltage sources, equate the clockwise sum of all the resistor voltages to the counter-clockwise sum of all the source voltages, and order the terms, from in to iM. For each dependent voltage source present, relate the source voltage and the controlling quantity to the variables i1, i2,..., iM, if they are not already in that form
4. If the circuit contains only voltage sources, apply Kirchhoff 's voltage law around each mesh. To obtain the resistance matrix if a circuit has only independent voltage sources, equate the clockwise sum of all the resistor voltages to the counter-clockwise sum of all the source voltages, and order the terms, from i1 to iM. For each dependent voltage source present, relate the source voltage and the controlling quantity to the variables i1 , i2 , …, iM, if they are not already in that form

5. If the circuit contains current sources, temporarily modify the given circuit by replacing each source by a open circuit, thus reducing the number of meshes by one for each current source that is present. The assigned mesh currents should not be changed. Using these assigned mesh currents, apply kirchhoffs voltage law around each of the meshes or super-meshes in this modified circuit. relate each source current to the variables i1, i2,..., iM, if it is not already in that form
5. If the circuit contains current sources, temporarily modify the given circuit by replacing each source by a open circuit, thus reducing the number of meshes by one for each current source that is present. The assigned mesh currents should not be changed. Using these assigned mesh currents, apply Kirchhoff ' s voltage law around each of the meshes or super-meshes in this modified circuit. Relate each source current to the variables i1 , i2 , …, iM, if it is not already in that form
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《电路》(英文版)2-1 Nodal analysis.ppt
- 《电路》(英文版)1-7 voltage and current division.ppt
- 《电路》(英文版)1-6 source transformations.ppt
- 《电路》(英文版)1-5 Network reduction by A-Y transformation.ppt
- 《电路》(英文版)1-4 Resistance and Source combination.ppt
- 《电路》(英文版)1-3 Kirchhoff s laws.ppt
- 《电路》(英文版)1-2hm'slaw.ppt
- 《电路》(英文版)1-1 Introduction.ppt
- 中国科学院院:《自动控制的若干问题》讲义.ppt
- 科学出版社:《自动控制理论》课程教材(第四版)教学资源(PPT讲课件稿)第四章 线性系统的根轨迹法.ppt
- 科学出版社:《自动控制理论》课程教材(第四版)教学资源(PPT讲课件稿)第六章 线性系统的校正方法.ppt
- 科学出版社:《自动控制理论》课程教材(第四版)教学资源(PPT讲课件稿)第八章 非线性控制系统分析.ppt
- 科学出版社:《自动控制理论》课程教材(第四版)教学资源(PPT讲课件稿)第五章 线性系统的频域分析法 5-2 频率特性 5-3 典型环节和开环系统频率特性的极坐标图.ppt
- 科学出版社:《自动控制理论》课程教材(第四版)教学资源(PPT讲课件稿)第五章 线性系统的频域分析法 5-4 典型环节和开环系统频率特性的对数坐标图.ppt
- 科学出版社:《自动控制理论》课程教材(第四版)教学资源(PPT讲课件稿)第二章 控制系统的数学模型.ppt
- 科学出版社:《自动控制理论》课程教材(第四版)教学资源(PPT讲课件稿)第三章 线性系统的时域分析法.ppt
- 科学出版社:《自动控制理论》课程教材(第四版)教学资源(PPT讲课件稿)第七章 线性离散系统的分析与校正.ppt
- 科学出版社:《自动控制理论》课程教材(第四版)教学资源(PPT讲课件稿)第一章 自动控制的一般概念.ppt
- 《化工自动化仪表》课程教学资源(PPT课件讲稿)第15章 典型化工单元的控制方案.ppt
- 《化工自动化仪表》课程教学资源(PPT课件讲稿)第14章 计算机控制系统.ppt
- 《电路》(英文版)2-3 Linearity and superposition.ppt
- 《电路》(英文版)2-4 Thevenin's and Norton's theorems.ppt
- 《电路》(英文版)2-5 Maximum power transfer in the DC case.ppt
- 《电路》(英文版)3-1 The OP-amp.ppt
- 《电路》(英文版)3-2 op-am—— resistor circuits.ppt
- 《电路》(英文版)3-3 Voltage follower(跟随器)(or isolator隔离器).ppt
- 《电路》(英文版)3-4 Analog addition and subtraction.ppt
- 《电路》(英文版)4-1 the inductor.ppt
- 《电路》(英文版)4-2 The capacitor.ppt
- 《电路》(英文版)4-3 Inductance and capacitance combinations.ppt
- 《电路》(英文版)4-4 Duality(对偶性).ppt
- 《电路》(英文版)4-5 Simple capacitor-OP-AMP-circuits.ppt
- 《电路》(英文版)5-1 The unit-s-step(阶跃) forcing function.ppt
- 《电路》(英文版)5-2 The source-free RL circuit.ppt
- 《电路》(英文版)5-3 The source-free RC circuit.ppt
- 《电路》(英文版)5-4 The driven RL circuit.ppt
- 《电路》(英文版)5-5 The driver RC circuit.ppt
- 《电路》(英文版)6-1The source-free parallel circuit.ppt
- 《电路》(英文版)6-2 The source-free series circuit.ppt
- 《电路》(英文版)6-3 The complete response of the RLC.ppt