《电路》(英文版)5-2 The source-free RL circuit

85-2 The source-free RL circuit i(t)--time var ying current R UR( L)ULO at t=0, i(t) KVL: VR+V,=0 or i+l-=0 dt di R di R R +--dt=0 or di t→ dt R In i(t)-Inl=--t .i(t=le l L
§5-2 The source-free RL circuit 0 0 0 0 0 I i( ) I t at t , i(t ) i(t ) time var ying current = = = = − − t L R t i t I e L R i t I − − 0 = − = 0 ln ( ) ln ( ) : + = 0 + = 0 dt di KVL vR vL or Ri L + = = − = − i( t ) t I dt L R i di dt L R i di dt or L R i di 0 0 0 (t) L + − (t) R − + R i(t) L

Let us assume a solution i(t=Ae, where a and S, are constant to be determined d(Ae R(Ae”)+L 0 R RAel+ lasel=o or A(s,+el=0 R the solution are S, L ∴i(t)=AeL if i(t) I。→A=I, 0 ..i( t)=1o 2R Pr=Ri= RIoe l It =RI R PR dt 0 L LIo)
t L R R p Ri RI e 2 2 0 2 − = = Let us assume a solution i(t)=A , where A and s1 are constant to be determined. s t e 1 0 ( ) ( ) 1 1 + = dt d Ae R Ae L s t s t 0 ( ) 0 1 1 1 + 1 = 1 + = s t s t s t e L R RAe LAs e or A s L R the solutionare s1 = − t L R i(t ) Ae − = t L R i t I e − = 0 ( ) ) 2 1 ( 2 1 2 0 2 0 2 0 2 0 0 w p dt R I e dt LI w LI L t L R R = R = = = = − 0 0 I A I t 0 i f i( t ) = → = =

)L1 R1 10mH 1k 0 -- 10u 20us 40us 50us I(L1)
Time 0s 10us 20us 30us 40us 50us I(L1) 0A 1.0A 2.0A 0 I L1 10mH 1 2 R 1 1k

The series RL circuit: i(t)=loe At zero time. the current is the o And as time increases. the current decreases and approaches zero The initial rate of decay is found by evaluating the derivative at zero time i/I R dt t RL
The series RL circuit: t L R i t I e − = 0 ( ) At zero time, the current is the I0 . And as time increases, the current decreases and approaches zero. i t 0 0 I The initial rate of decay is found by evaluating the derivative at zero time. L R t e L R dt t I i d t L R = − = = − = − 0 0 ( ) 0 1 t 0 0 i / I

We designated the value of time it takes for io to drop from unity to zero, assuming a constant rate of decay, by the greek letterτ R f-t=l or T =L/R--time-constant i(t=loe t ori(z)=0.36810=36810% The value of io at tT =er=e=0.368 i/I In one time constant the response has dropped to 36.8 0.368 percent of its initial value. 0.135 T 2t 3T
We designated the value of time it takes for i/I0 to drop from unity to zero, assuming a constant rate of decay, by the Greek letter . The value of i/I0 at t= 0.368 ( ) 1 0 = = = − − e e I i In one time constant the response has dropped to 36.8 percent of its initial value. If =1 or = L/R--time-constant L R t i t I e − = 0 ( ) 0 0 0 8 0 or i( ) = 0.368I = 36. I 0.368 t 0 0 i / I 2 3 0.135 0.051

Why does a larger value of the time constant L/R produce response curves, which decays more slowly (↑τ↑w=L2/2↑t↑orR↓↑p=R2↓t↑) If a circuit contains any number of resistors and one inductor. we fix our attention on the two terminals of the inductor and determine the equivalent resistance across these terminals. The circuit is reduced to simple series case
If a circuit contains any number of resistors and one inductor, we fix our attention on the two terminals of the inductor and determine the equivalent resistance across these terminals. The circuit is reduced to simple series case. Why does a larger value of the time constant L/R produce response curves, which decays more slowly? (L↑ ↑ wL=Li 2/2↑ t↑or R ↓ ↑ p=Ri 2↓ t↑)

L L R3 R R R4 R R=R3+R4R1R2→zs →=i(0)ex R1+R2 R eq R R +r iL(oet and e + r
t L L eq eq i i e R L R R R R R R R − → = → = + = + + (0) 1 2 1 2 3 4 t L t L i ( )e R R R i ( )e and i R R R i − − + = − + = − 0 0 1 2 1 2 1 2 2 1

If we are given the initial value have i as i, (0 then i2(0)= R1i(0+) R i1(0)=i1(0+) R3 /i(0+)+i2(0+ R4 R2 R4 R 2 R1+R2i(0) R i1(t)=i1(0+)e 2()R i1(0+)e ()=-R+R, i1(0+)e (t=L/Rea) R Since the inductor current decays exponentially as e t, then every current and voltage in the resistive network must have the same function behavior
( ) (0 ) ( / ) 1 2 1 2 eq t L i e L R R R R and i t = + = − − + 2 1 1 2 (0 ) (0 ) R R i then i + + = i ( ) R R R [i ( ) i ( )] i ( ) i ( ) L L + + + + + = − = − + = 0 0 0 0 0 1 2 1 2 1 2 t t i e R R i t i e i t − + − + ( ) = (0 ) ( ) = (0 ) 1 2 1 1 1 2 If we are given the initial value have i1 as (0 ). 1 + i Since the inductor current decays exponentially as , then every current and voltage in the resistive network must have the same function behavior. t e −

Example 2: Find i, and i, for t>0. solution 120 2×3 eq +1=2.2mH 2+3 ImH 18V 2mwmv2=50(120+60)×90 120+60+90 110 ea 2.2×10 0.36 =2×10s 0.2 R 11o ea i(0)=0.364→i(0+)=i(0-)=0.364 180 0.24 i1(0)=18/90=0.2 A and i1(0)=-i2(0) =-0.24A 180+90 i1(t)=0.36e4andi1(t)=-0.24e04
Example 2: Find iL and i1 for t>0. 110 120 60 90 (120 60) 90 50 = + + + Req = + i (t ) . e A and i (t ) . e A t t L 50000 1 50000 0 36 0 24 − − = = − i L(0 ) = 0.36A → i L(0 ) = i L(0 ) = 0.36A − + − i ( ) / . A and i ( ) i L ( ) 0.24A 180 90 180 0 18 90 0 2 0 0 1 1 = − + = = = − − + + solution: s R L eq eq 5 3 2 10 110 2 2 10 − − = = = . L i R i 0.36 −0.24 0.2 Leq 1 2.2mH 2 3 2 3 + = + =

R4 120 R3 TOPEN =0 60 R1 1mH 50 R2 L2 18V 90 1.2mH 0
I R 1 50 R 2 90 L1 1mH 1 2 R 4 120 R 3 60 18V L2 1.2mH 1 2 U 1 TOPEN = 0 1 2 0
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《电路》(英文版)5-1 The unit-s-step(阶跃) forcing function.ppt
- 《电路》(英文版)4-5 Simple capacitor-OP-AMP-circuits.ppt
- 《电路》(英文版)4-4 Duality(对偶性).ppt
- 《电路》(英文版)4-3 Inductance and capacitance combinations.ppt
- 《电路》(英文版)4-2 The capacitor.ppt
- 《电路》(英文版)4-1 the inductor.ppt
- 《电路》(英文版)3-4 Analog addition and subtraction.ppt
- 《电路》(英文版)3-3 Voltage follower(跟随器)(or isolator隔离器).ppt
- 《电路》(英文版)3-2 op-am—— resistor circuits.ppt
- 《电路》(英文版)3-1 The OP-amp.ppt
- 《电路》(英文版)2-5 Maximum power transfer in the DC case.ppt
- 《电路》(英文版)2-4 Thevenin's and Norton's theorems.ppt
- 《电路》(英文版)2-3 Linearity and superposition.ppt
- 《电路》(英文版)2-2 mesh(网孔) analysis.ppt
- 《电路》(英文版)2-1 Nodal analysis.ppt
- 《电路》(英文版)1-7 voltage and current division.ppt
- 《电路》(英文版)1-6 source transformations.ppt
- 《电路》(英文版)1-5 Network reduction by A-Y transformation.ppt
- 《电路》(英文版)1-4 Resistance and Source combination.ppt
- 《电路》(英文版)1-3 Kirchhoff s laws.ppt
- 《电路》(英文版)5-3 The source-free RC circuit.ppt
- 《电路》(英文版)5-4 The driven RL circuit.ppt
- 《电路》(英文版)5-5 The driver RC circuit.ppt
- 《电路》(英文版)6-1The source-free parallel circuit.ppt
- 《电路》(英文版)6-2 The source-free series circuit.ppt
- 《电路》(英文版)6-3 The complete response of the RLC.ppt
- 《电路》(英文版)7-1 Characteristics of sinusoids.ppt
- 《电路》(英文版)7-2 Forced response to sinusoidal forcing functions.ppt
- 《电路》(英文版)7-3 Effective values of current and voltage.ppt
- 《电路》(英文版)7-4 The complex forcing function.ppt
- 《电路》(英文版)7-5 The phasor(相量).ppt
- 《电路》(英文版)7-6 Phasor relationships for、and R:.ppt
- 《电路》(英文版)7-7 Impedance.ppt
- 《电路》(英文版)8-1 Nodal, mesh and loop analysis Nodal analysis.ppt
- 《电路》(英文版)8-2 Superposition, source transformation and Thevenin's theorem.ppt
- 《电路》(英文版)8-3 Phasor diagrams.ppt
- 《电路》(英文版)9-1 Instantaneous power.ppt
- 《电路》(英文版)9-2 Average power.ppt
- 《电路》(英文版)9-3 Apparent power and power factor.ppt
- 《电路》(英文版)9-4 Complex power.ppt