《电路》(英文版)6-1The source-free parallel circuit

86-1 The source-free parallel circuit i(0)=I R C (0-)= Re∫ KCL:-+ odt -i(to)+C doo RLJto 十 +-b=0 r dt Let v= aest CAs2e”+ As,st e+— 0 R Ae(Cs+s/R+1/l=0
§6-1 The source-free parallel circuit 0 0 (0 ) (0 ) V i I = = − − 0 2 + + = st st st e L A e R As CAs e ( ) 0 1 : 0 0 + − + = dt d dt i t C R L KCL t t 0 1 1 2 2 + + = dt L d dt R d C st Let = Ae ( / 1/ ) 0 2 Ae Cs + s R+ L = st R i(t) L C Re f

Ae (Cs+S/R+1/L)=0 Let: CS+S/R+1/L=0 RVR-4L 1,2 2C 2RC 2RC LC or S= 十 2RC 2RC LC 2 2RC V 2RC LC St e = S?t 2 1922 two arbitrary constants SL S2----real numbers or conjugate complex Since the st and s,t must be dimensionless, S, S2----(1/s)
LC 1 ) 2RC 1 ( 2RC 1 s LC 1 ) 2RC 1 ( 2RC 1 or s 2 2 2 1 = − + − = − − − : / 1/ 0 2 Let Cs + s R + L = C RC RC LC L C R R s 1 ) 2 1 ( 2 1 2 ) 4 1 ( 1 2 2 1,2 = − − − − = s t s t A e A e 1 2 = 1 + 2 A1 , A2 ----two arbitrary constants s1, s2 ----real numbers or conjugate complex Since the s1 t and s2 t must be dimensionless, s1, s2 ---- (1/s). ( / 1/ ) 0 2 Ae Cs + s R+ L = st

Let 0 LC resonant(谱谐振) frequency a neper frequency or exponential damping coefficient 2RC 十 ZRO ZRO LC 、6 2RC LO -√-0 ZRO a>00 c-0 real-number c<00 imaginary-number 0,V c-0 zero
-- neper frequency or exponential damping coefficient. 2RC 1 = 2 0 2 2 2 2 0 2 2 1 1 ) 2 1 ( 2 1 1 ) 2 1 ( 2 1 = − − − = − − − = − + − = − + − RC RC LC s RC RC LC s zero imaginary number real number = − − − − − − − − − − − − − − 2 0 2 0 2 0 2 0 2 0 2 0 , , , LC 1 Let resonant( 0 = 谐振) frequency

1. The over-damped parallel rlc circuit a>00---( ZRO 2 0<C 00<-a+a <0 The S, and s, are negative real numbers, thus, the response can be expressed as the sum of two decreasing exponential terms, both of which approach zero as time increases without limit. The term containing S,(T2 <T has the more rapid rate of decrease
1. The over-damped parallel RLC circuit ) 1 2 1 ( 0 RC LC − − − The S1 and S2 are negative real numbers, thus, the response can be expressed as the sum of two decreasing exponential terms, both of which approach zero as time increases without limit. 2 1 s s The term containing s2 ( ) has the more rapid rate of decrease. 2 1 1 2 t 0 2 0 2 2 0 2 2 0 2 − − − − − + −

Example: Find u(t) 3.5 R i(t) 2RC 2×6× 42 607H 0o=√LC 7× Re∫ 42 D(0)=0 ∴> i(0)=10A c+√ 3.5+√3.52-6=-3.5+2.5=-1 2 3.5-25=-6 D(t)=Ae t+Ae-6t
Example: Find (t). i(0) 10A (0) 0 = = 6 42 1 7 1 1 0 = = = LC 3.5 2.5 6 2 0 2 s2 = − − − = − − = − 0 3 5 3 5 6 3 5 2 5 1 2 2 0 2 s1 = − + − = − . + . − = − . + . = − t t t A e A e 6 1 2 ( ) − − = + 3.5 42 1 2 6 1 2 1 = = = RC R i c i 6 i(t) 7H F 42 1 Re f

(t)=412e+A2 R i(t) U(0)=0→>0=41+42 6g71F do i(0)=10A一 e-642 dt Re f dudu d t dt t=0 Cs←(0)+i(0)i(0) 420 or-41-642=420∴41=84,A2=-84 N84e- U(t)=84(e--e" 84 d let 84(-e-+6e)=0 +6e 0→e 6 At time t the voltage becomes maximum 0.358s→m=48.9 5
t t A e A e dt d i A 6 10 1 6 2 (0) − − = → = − − 420 (0) (0) (0) (0) 0 = = + = = = = C i C i i C i dt t d dt d i C c R c t e e V t t ( ) 84( ) − −6 = − A1 = 84, A2 = −84 : 84( 6 ) 0 6 = − + = −t − t e e dt d let t e − 84 t e 6 84 − − t m t At time tm the voltage becomes maximum. t s V e e e m m t t t m m m 0.358 48.9 5 ln 6 6 0 6 6 5 = = → = − + = → = − − 0 0 1 2 (0) = → = A + A or − A1 − 6A2 = 420 R i c i 6 i(t) 7H F 42 1 Re f t t t A e A e 6 1 2 ( ) − − = +

R1 7H b 0238 0 50V 25V 5.0s 口V(R1:2) Time
V L1 7H 1 2 C 1 0.0238 R 1 6 0 Time 0s 1.0s 2.0s 3.0s 4.0s 5.0s 6.0s V(R1:2) 0V 25V 50V

2. Critical damping a=ooa-O=0 →R 2 =35√692) 2RC√LC i(t) 0 LC 35607H Ref =e (Ait+A2)=Ate vt me v6t U(0)=0→A2=0u()=41te dU=A1t(-、6e√6t+heV6r dv dt t=0 du do i2(0)i(0)+i(0)i(0 =420= dt t=0 C U(t)=420te √6t =422454
2. Critical damping 3.5 6 ) 2 1 1 2 1 , 0 ( 2 0 2 = 0 − = − − − = → = = C L R RC LC ( ) t A t A te 6 0 2 0 1 (0) − = → = = 6 6 1 1 2 0 = = − = − = = = s s LC ( ) e e e t t t t A t A A t A 6 2 6 1 2 1 ( ) − − − = + = + t te te V 6 t 2.45t ( ) 420 420 − − = = 1 6 1 6 1 0 ( 6) A dt t d A t e A e dt d t t = = = − + − − 420 1 (0) (0) (0) (0) 0 A C i C i i C i dt t d dt d i C c R c = = = + = = = = R i c i 3.5 6 i(t) 7H F 42 1 Re f

U(t)=420te t 420te45t 420t lim u(t)=lim =420im 0 t→0 t→0 2.45t t->∞2.45e 2.45t du(t) 0,420e0(-√6t+1)=0 dt rm=、6=04090m=4208=03 63.1
t t e t e V 6 t 2.45t ( ) 420 420 − − = = t . s . e . V . . m 0 408 m 420 0 408 63 1 6 1 2 4 5 0 408 = = → = = − m = 63.1V t 0 t m 0 2.45 1 420lim 420 lim ( ) lim 2.45 2.45 = = = → → → t t t t t e e t t 0, 420 ( 6 1) 0 ( ) 6 = − + = − e t dt d t t

C1 7H 0238 8.573 0 “… “““ 口V(L1:1)◇V(L1:1)v(L1:1)
V C 1 0.0238 0 L1 7H 1 2 V R 1 8.573 Time 0s 1.0s 2.0s 3.0s 4.0s 5.0s 6.0s V(L1:1) V(L1:1) V(L1:1) 0V 40V 80V
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《电路》(英文版)5-5 The driver RC circuit.ppt
- 《电路》(英文版)5-4 The driven RL circuit.ppt
- 《电路》(英文版)5-3 The source-free RC circuit.ppt
- 《电路》(英文版)5-2 The source-free RL circuit.ppt
- 《电路》(英文版)5-1 The unit-s-step(阶跃) forcing function.ppt
- 《电路》(英文版)4-5 Simple capacitor-OP-AMP-circuits.ppt
- 《电路》(英文版)4-4 Duality(对偶性).ppt
- 《电路》(英文版)4-3 Inductance and capacitance combinations.ppt
- 《电路》(英文版)4-2 The capacitor.ppt
- 《电路》(英文版)4-1 the inductor.ppt
- 《电路》(英文版)3-4 Analog addition and subtraction.ppt
- 《电路》(英文版)3-3 Voltage follower(跟随器)(or isolator隔离器).ppt
- 《电路》(英文版)3-2 op-am—— resistor circuits.ppt
- 《电路》(英文版)3-1 The OP-amp.ppt
- 《电路》(英文版)2-5 Maximum power transfer in the DC case.ppt
- 《电路》(英文版)2-4 Thevenin's and Norton's theorems.ppt
- 《电路》(英文版)2-3 Linearity and superposition.ppt
- 《电路》(英文版)2-2 mesh(网孔) analysis.ppt
- 《电路》(英文版)2-1 Nodal analysis.ppt
- 《电路》(英文版)1-7 voltage and current division.ppt
- 《电路》(英文版)6-2 The source-free series circuit.ppt
- 《电路》(英文版)6-3 The complete response of the RLC.ppt
- 《电路》(英文版)7-1 Characteristics of sinusoids.ppt
- 《电路》(英文版)7-2 Forced response to sinusoidal forcing functions.ppt
- 《电路》(英文版)7-3 Effective values of current and voltage.ppt
- 《电路》(英文版)7-4 The complex forcing function.ppt
- 《电路》(英文版)7-5 The phasor(相量).ppt
- 《电路》(英文版)7-6 Phasor relationships for、and R:.ppt
- 《电路》(英文版)7-7 Impedance.ppt
- 《电路》(英文版)8-1 Nodal, mesh and loop analysis Nodal analysis.ppt
- 《电路》(英文版)8-2 Superposition, source transformation and Thevenin's theorem.ppt
- 《电路》(英文版)8-3 Phasor diagrams.ppt
- 《电路》(英文版)9-1 Instantaneous power.ppt
- 《电路》(英文版)9-2 Average power.ppt
- 《电路》(英文版)9-3 Apparent power and power factor.ppt
- 《电路》(英文版)9-4 Complex power.ppt
- 《电路》(英文版)9-5 Maximum power transfer in the AC case.ppt
- 《电路》(英文版)10-1 Parallel resonance(谐振).ppt
- 《电路》(英文版)10-2 Series resonance.ppt
- 《电路》(英文版)10-3 Other resonant forms.ppt