电子科技大学:《材料设计与计算 Materials Design and Computation》课程教学资源(课件讲稿)MDC 03 DFT(2/3)

For most systems,we can use(spin-polarized)PBE functional; For systems with d-and f-orbitals,we may use DFT+U, depending on the properties we study; Strategy for For systems with small formation/adsorption/...energies(<-50 meV),we may consider DFT+vdW; true ab-initio For semiconductors,compare the structure,electronic states modelling and band gap values with possible experiments,then decide the adopted functional; May apply HSE functional only at some critical steps because of its poor efficiency; Perform GW on top of the HSE functional,if needed. Based on things you want to know!
Strategy for true ab-initio modelling For most systems, we can use (spin-polarized) PBE functional; For systems with d- and f- orbitals, we may use DFT+U, depending on the properties we study; For systems with small formation/adsorption/… energies (<~50 meV), we may consider DFT+vdW; For semiconductors, compare the structure, electronic states and band gap values with possible experiments, then decide the adopted functional; May apply HSE functional only at some critical steps because of its poor efficiency; Perform GW on top of the HSE functional, if needed. Based on things you want to know!

Beyond GGA-DRT+U The L(S)DA/GGA often fails to describe systems with localized(strongly correlated)d andf electrons >wrong one-electron energies Strong intra-atomic interaction is introduced in a(screened)Hartree-Fock like manner,as an on site replacement of the L(S)DA/GGA>the L(S)DA+U method. Dudarev's approach to DFT+U The DFT+U Hamitonian includes contributions already accounted for in the DFT functional> subtract double-counting,adopt rotationally invariant formulation. This can be understood as adding a penalty functional to the DFT total energy expression that forces the on site occupancy matrix in the direction of idempotency. The on site Coulomb-parameter,U=E(dn+)+E(dn-1)-2E(dn),and exchange parameter J. The U and J parameters do not enter separately,only the difference (UJ)is meaningful
Beyond GGA – DFT + U • The L(S)DA/GGA often fails to describe systems with localized (strongly correlated) d and f electrons → wrong one-electron energies • Strong intra-atomic interaction is introduced in a (screened) Hartree-Fock like manner, as an on site replacement of the L(S)DA/GGA → the L(S)DA+U method. Dudarev’s approach to DFT+U ✓ The DFT+U Hamitonian includes contributions already accounted for in the DFT functional → subtract double-counting, adopt rotationally invariant formulation. ✓ This can be understood as adding a penalty functional to the DFT total energy expression that forces the on site occupancy matrix in the direction of idempotency. ✓ The on site Coulomb- parameter, U = E(dn+1) + E(dn-1 ) – 2E(d n ), and exchange parameter J. ✓ The U and J parameters do not enter separately, only the difference (U −J) is meaningful

Beyond GGA-DRT+U U=0 U=1 U=2 Exp. ●Rocksalt structure a(A) 5.403 5.413 5.422 5.417 Eg(eV) 0.41 0.71 1.01 0.95 AFM ordering of Ni(111)planes Ni 3d electrons in octahedral crystal field a() 5.417 5.417 5.417 Eg(eV) 0.63 0.81 1.01 12g (3dxy,3dx,3d=) NiO FeS2 eg (3d2-2,3d2) fu-丁 U=0 U=leV U=2eV LSDA Dudarev U=8 J=0.95 2 2 7 0 0 ()u 2 Optimized lattice constant -2 0 24 6 8 10 4 -2 0 24 6 8 10 E(eV) E(eV) mNil 1.15B mNi = 1.71g Egap 0.44eV Egap = 3.38eV (A3)K3oug Experiment -2 Experimental lattice constant 3 mx=1.64-1.70e Egp=4.0.4.3eV M R
Beyond GGA – DFT + U NiO FeS2

Beyond GGA--GGA+vdW Popular local and semilocal density functionals are unable to describe correctly van der Waals interactions resulting from dynamical correlations between fluctuating charge distributions. EDFT-disp =EKS-DFT+Edisp:Edisp=- 1 Nar Na Add vdW correction to potential energy,interatomic forces,as well as stress tensor and hence simulations such as atomic and lattice relaxations,molecular dynamics,and vibrational analysis Nat (via finite differences)can be performed. Edisp = DFT-D2 by Grimme et al. S.Grimme.,J.Comp.Chem.27,1787(2006). DFT-D3 by Grimme et al. S.Grimme,J.Antony,S.Ehrlich,and S.Krieg,J.Chem.Phys.132,154104(2010) A.Tkatchenko,R.A.Di Stasio,R.Car,and M.Scheffler,Phys.Rev.Lett.108,236402(2012) DFT-TS by Tkatchenko-Scheffler M.Dion,H.Rydberg,E.Schr"oder,D.C.Langreth,and B.I.Lundqvist,Phys.Rev.Lett.92, vdW-DF and by Langreth and 246401(2004) Lundqvist et al.(PBE) K.Lee,E.D.Murray,L.Kong,B.I.Lundqvist,and D.C.Langreth,Phys.Rev.B82,081101 (2010)
Popular local and semilocal density functionals are unable to describe correctly van der Waals interactions resulting from dynamical correlations between fluctuating charge distributions. • Add vdW correction to potential energy, interatomic forces, as well as stress tensor and hence simulations such as atomic and lattice relaxations, molecular dynamics, and vibrational analysis (via finite differences) can be performed. Beyond GGA -- GGA + vdW DFT-D2 by Grimme et al. DFT-D3 by Grimme et al. DFT-TS by Tkatchenko-Scheffler vdW-DF and by Langreth and Lundqvist et al. (PBE) S. Grimme., J. Comp. Chem. 27, 1787 (2006). S. Grimme, J. Antony, S. Ehrlich, and S. Krieg, J. Chem. Phys. 132, 154104 (2010) A. Tkatchenko, R. A. Di Stasio, R. Car, and M. Scheffler, Phys. Rev. Lett. 108, 236402 (2012) M. Dion, H. Rydberg, E. Schr ¨oder, D. C. Langreth, and B. I. Lundqvist, Phys. Rev. Lett. 92, 246401 (2004) K. Lee, E. D. Murray, L. Kong, B. I. Lundqvist, and D. C. Langreth, Phys. Rev. B 82, 081101 (2010)

Beyond GGA--GGA+vdW Ead-Fadsorbed substrateEsubstrate Eadsorbate~50-200 meV Graphene on metals Benchmark:Ead of Xe/Pb(111) (c) 2 LDA up L Calculated:172.6 mev, 进 ::11111 !目!目日:1:.1 Experimental:191+10 meV -D-Ne/Pb(111) 0-KP(11) 6 hcp : +一fcc 0.7 graphene@Ni(111) e-口revPBE x-only Wave vector atop -LDA xonly PBE x-only 0,5 revPBE xc 2 vdw-DF up LDA LDA 0.q Hiii用 -11 0.1 vdW-DF 6 -50 0888:0-590☑ 0,0 568686666888445 0, 2.5 3.0 3.5 4.0 4.5 5.0 5.5 0. -10 (10'nm) (b) Vertical separation d(A) 6 M Ne-Pb(111) Wave vector PHYSICAL REVIEW B 81,081408(R)(2010)
Beyond GGA -- GGA + vdW Benchmark: Ead of Xe/Pb(111) Calculated: 172.6 meV, Experimental: 191±10 meV Ead = Eadsorbed substrate – Esubstrate – Eadsorbate ~ 50-200 meV Graphene on metals

Beyond GGA--GW approximation Calculate DFT/hybrid functional wavefunctions A+Vion(r)+ve(r)+vx(r) p(r)=En(r) 2m Determine Green function and W using DFT wavefunctions Determine first order change of energies h" 21 △+Vom+V+∑(GW)p)=En Update Green's function and self-energy(W fixed to W) Gr,r)=∑ (r)0(r) 0-E-E +i sgnl En EFomi M.S.Hybertsen,S.G.Louie,Phys.Rev.B 34,5390(1986)
Beyond GGA -- GW0 approximation Calculate DFT/hybrid functional wavefunctions Determine Green function and W using DFT wavefunctions Determine first order change of energies Update Green’s function and self-energy (W fixed to W0 ) M. S. Hybertsen, S. G. Louie, Phys. Rev. B 34, 5390 (1986) ( ) ( ) ( ) ( ) ( ) 2 2 r r r r r n n n e V V V E m = − + + + ion e l xc n n e n V V GW E m − + + +( ) = 2 0 2 ion e l − − + − = m m m Fermi m m E E i E E G sgn[ ] ( ) ( ) ( , ) r r r r

The Accuracy of DFT ·Atomic structures bond lengths and lattice constants are accurate to within 1-2% ·Energies several meVs;but depends on different functionals Vibrational frequencies within 5-10%accuracy
Atomic structures bond lengths and lattice constants are accurate to within 1-2% Energies several meVs; but depends on different functionals Vibrational frequencies within 5-10% accuracy The Accuracy of DFT

The limitations of DFT ·Band-gap problem HKS theorem is not valid for excited states; band-gaps in semiconductors and insulators are usually underestimated. ·Overbinding -LSDA:too small lattice constants,too large cohesive energies,too high bulk moduli; -The use of the GGA is mandatory for calculating adsorption energies,but the choice of the "correct"GGA is important. Neglect of strong correlations -Exchange-splitting underestimated for narrow d-and f-bands; Many transition-metal compounds are charge-transfer insulators,but DFT predicts metallic state. Neglect of van der Waals interactions -vdW forces are not included in any DFT functional; -Approximate expression of vdW forces on the basis of local polarizabilities derived from DFT
The limitations of DFT Band-gap problem - HKS theorem is not valid for excited states; - band-gaps in semiconductors and insulators are usually underestimated. Overbinding - LSDA: too small lattice constants, too large cohesive energies, too high bulk moduli; - The use of the GGA is mandatory for calculating adsorption energies, but the choice of the “correct” GGA is important. Neglect of strong correlations - Exchange-splitting underestimated for narrow d- and f-bands; - Many transition-metal compounds are charge-transfer insulators, but DFT predicts metallic state. Neglect of van der Waals interactions - vdW forces are not included in any DFT functional; - Approximate expression of vdW forces on the basis of local polarizabilities derived from DFT

Building models Cubo-Oh:M@Pt12 ody-centered cublc Face-centered cublc (b) Dual Catalytic Site side view La SroMnO, BaTiO, La SreMnO, 42

Crystal Structures Bravais Lattice:specifies the periodic array in which the repeated units of the crystal are arranged. The unit themselves may be single atoms,groups of atoms,molecules,and ions. R=na+naz+ngas a,a,as:primitive vectors The position of the center of an atom i of the basis relative to the associated lattice point is An ideal crystal is constructed by the t,=x1a1+x2ā2+X,ā3 infinite repetition of identical structure where0≤x,x2,x3≤1 units in space
Crystal Structures An ideal crystal is constructed by the infinite repetition of identical structure units in space. Bravais Lattice: specifies the periodic array in which the repeated units of the crystal are arranged. The unit themselves may be single atoms, groups of atoms, molecules, and ions. The position of the center of an atom i of the basis relative to the associated lattice point is
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 电子科技大学:《材料设计与计算 Materials Design and Computation》课程教学资源(课件讲稿)MDC 02 DFT(1/3).pdf
- 电子科技大学:《材料设计与计算 Materials Design and Computation》课程教学资源(课件讲稿)MDC 01 Introduction(张妍宁).pdf
- 《材料设计与计算 Materials Design and Computation》课程教学资源(参考书籍)DENSITY FUNCTIONAL THEORY - A Practical Introduction(DAVID S. SHOLL、JANICE A. STECKEL).pdf
- 电子科技大学:《材料分子结构分析 Molecular Structure Analysis of Materials》课程教学资源(课件讲稿)第九章 热分析 Thermal analysis.pdf
- 电子科技大学:《材料分子结构分析 Molecular Structure Analysis of Materials》课程教学资源(课件讲稿)第八章 色谱法 chromatography.pdf
- 电子科技大学:《材料分子结构分析 Molecular Structure Analysis of Materials》课程教学资源(课件讲稿)第七章 核磁共振谱 Nuclear Magnetic Resonance Spectroscopy,NMR.pdf
- 电子科技大学:《材料分子结构分析 Molecular Structure Analysis of Materials》课程教学资源(课件讲稿)第六章 拉曼光谱 Raman spectroscopy.pdf
- 电子科技大学:《材料分子结构分析 Molecular Structure Analysis of Materials》课程教学资源(课件讲稿)第五章 红外光谱 Infrared Spectroscopy.pdf
- 电子科技大学:《材料分子结构分析 Molecular Structure Analysis of Materials》课程教学资源(课件讲稿)第四章 分子荧光光谱 Molecular fluorescence spectroscopy.pdf
- 电子科技大学:《材料分子结构分析 Molecular Structure Analysis of Materials》课程教学资源(课件讲稿)第三章 紫外——可见光谱 Ultraviolet and visible spectroscopy UV—Vis.pdf
- 电子科技大学:《材料分子结构分析 Molecular Structure Analysis of Materials》课程教学资源(课件讲稿)第二章 波谱分析.pdf
- 电子科技大学:《材料分子结构分析 Molecular Structure Analysis of Materials》课程教学资源(课件讲稿)第一章 绪论(刘钰).pdf
- 电子科技大学:《薄膜材料与技术 Thin Film Material and Technology》课程教学资源(课件讲稿)第四章 金属薄膜的电导.pdf
- 电子科技大学:《薄膜材料与技术 Thin Film Material and Technology》课程教学资源(课件讲稿)第三章 薄膜的力学性质.pdf
- 电子科技大学:《薄膜材料与技术 Thin Film Material and Technology》课程教学资源(课件讲稿)第二章 真空技术.pdf
- 电子科技大学:《薄膜材料与技术 Thin Film Material and Technology》课程教学资源(课件讲稿)第一章 绪论(授课老师:白飞明).pdf
- 电子科技大学:《电子材料》课程教学资源(教学大纲).doc
- 上海交通大学:《材料科学与工程前沿》课程教学资源(案例讲座)石墨烯及其应用.pdf
- 上海交通大学:《材料科学与工程前沿》课程教学资源(案例讲座)汽车轻量化制造对材料及材料加工技术的挑战.pdf
- 上海交通大学:《材料科学与工程前沿》课程教学资源(案例讲座)材料基因工程(数据驱动的材料创新).pdf
- 电子科技大学:《材料设计与计算 Materials Design and Computation》课程教学资源(课件讲稿)MDC 04 DFT(3/3).pdf
- 电子科技大学:《材料设计与计算 Materials Design and Computation》课程教学资源(课件讲稿)MDC 05 Bulk calculations(1/2).pdf
- 电子科技大学:《材料设计与计算 Materials Design and Computation》课程教学资源(课件讲稿)MDC 06 Bulk calculations(2/2).pdf
- 电子科技大学:《材料设计与计算 Materials Design and Computation》课程教学资源(课件讲稿)MDC 07 Surface calculations(1/2).pdf
- 电子科技大学:《材料设计与计算 Materials Design and Computation》课程教学资源(课件讲稿)MDC 11 Modeling, Computation, Simulation, Designing and Screening of New Materials.pdf
- 电子科技大学:《材料设计与计算 Materials Design and Computation》课程教学资源(课件讲稿)MDC 12 An introduction of Monte Carlo method.pdf
- 电子科技大学:《材料设计与计算 Materials Design and Computation》课程教学资源(课件讲稿)MDC 13 Monte Carlo.pdf
- 电子科技大学:《材料设计与计算 Materials Design and Computation》课程教学资源(课件讲稿)MDC 14 Modeling and Simulation in Epitaxial Growth.pdf
- 电子科技大学:《材料设计与计算 Materials Design and Computation》课程教学资源(课件讲稿)MDC 15 Examples of MCMC:Reaction-Diffusion(R-D)model.pdf
- 电子科技大学:《材料设计与计算 Materials Design and Computation》课程教学资源(课件讲稿)MDC 16 MD in Materials Studio Key Modules.pdf
- 电子科技大学:《材料设计与计算 Materials Design and Computation》课程教学资源(课件讲稿)MDC 08 Surface calculations(2/2).pdf
- 电子科技大学:《材料设计与计算 Materials Design and Computation》课程教学资源(课件讲稿)MDC 09 Materials design.pdf
- 《金陵科技学院学报》:PZT压电材料参数在ANSYS中的定义方法.pdf
- 佛山科学技术学院:《高分子材料加工实验》课程教学资源(参考资料,打印版)塑料、纤维、橡胶的英文缩写语.pdf
- 佛山科学技术学院:《高分子材料加工实验》课程教学资源(实验,打印版)高分子材料配方实例.pdf
- 佛山科学技术学院:《高分子材料加工实验》课程教学资源(实验,打印版)实验三十一 一种隔热涂料的制备及其性能测试实验.pdf
- 佛山科学技术学院:《高分子材料加工实验》课程教学资源(实验,打印版)实验三十 高分子材料3D打印实验.pdf
- 佛山科学技术学院:《高分子材料加工实验》课程教学资源(实验,打印版)实验二十九 硬脂酸相变储能石膏板的制备与性能研究.pdf
- 佛山科学技术学院:《高分子材料加工实验》课程教学资源(实验,打印版)实验十六 扫描电子显微镜法观察聚合物聚态结构.pdf
- 佛山科学技术学院:《高分子材料加工实验》课程教学资源(实验,打印版)实验十五 差热分析.pdf