电子科技大学:《材料设计与计算 Materials Design and Computation》课程教学资源(课件讲稿)MDC 11 Modeling, Computation, Simulation, Designing and Screening of New Materials

Modeling,Computation,Simulation, Designing and Screening of New Materials Xiaobin Niu University of Electronic Science and Technology of China 4/8/2020 2
Modeling, Computation, Simulation, Designing and Screening of New Materials Xiaobin Niu University of Electronic Science and Technology of China 4/8/2020 2

Outline > Design materials using computation > Mathematical models in material science > Monte Carlo Method > Molecular Dynamics
Outline 0.0 ➢ Design materials using computation ➢ Mathematical models in material science ➢ Monte Carlo Method ➢ Molecular Dynamics

Design materials using computation National Academy of Sciences(1995) The phrase "materials by design"with an increasingly theoretical component to the design process,is becoming a reality. Researchers are thus using theory and computation to "design" materials. "n "v ce TS HM Tm Yh Lu Materials Design
2.0 Design materials using computation National Academy of Sciences (1995) The phrase “materials by design” with an increasingly theoretical component to the design process, is becoming a reality. Researchers are thus using theory and computation to “design” materials

Outline > Design materials using computation > Multiscale coupling > Materials Genome and materials informatics > Perspective
Outline 0.0 ➢ Design materials using computation ➢ Multiscale coupling ➢ Materials Genome and materials informatics ➢ Perspective

Role of computational materials science Understanding Prediction How,why,where of phenomenon Parameter values,new phenomena How does H diffuse through A? What is the diffusivity of H in A? Why is A harder than B? ·How hard is A? ·Where does A bind to B? Will A bind to B and how strongly? Design new materials. Shorten the materials development cycle Reduce the fabricating cost of materials
2.1 Role of computational materials science How, why, where of phenomenon • How does H diffuse through A? • Why is A harder than B? • Where does A bind to B? Understanding Prediction Parameter values, new phenomena • What is the diffusivity of H in A? • How hard is A? • Will A bind to B and how strongly? • Design new materials. • Shorten the materials development cycle. • Reduce the fabricating cost of materials

Role of computational materials science Tetrahedron relation between computer simulation and materials research Performances Optimized Desig of Composite in Meso-and Nano scopic Level Macroscopic Atomistic/ gomputr Functions 1门8参ON门echan花0 Nanoscience Synthesis composite scienc。 Properties System Design &t chnolo Civil Engineering Physics. Fabrication Chemistry Structure/component ■■■■■■■■■■■■■■■■■■■■■■■目■■■■■■ Computer simulation is the bridge of fundamental research and engineering application. ◆ ■。 Computer simulation point out the direction of future materials research ◆ ■ ◆ ■。 Computer simulation revise the differences between materials science and materials engineering 1■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■古■18
Tetrahedron relation between computer simulation and materials research 8 Performances Computer simulation Synthesis Fabrication Structure/component Properties 2.1 • Computer simulation is the bridge of fundamental research and engineering application. • Computer simulation point out the direction of future materials research • Computer simulation revise the differences between materials science and materials engineering Role of computational materials science

Recognization of computational materials The Nobel Prize in Chemistry 1998 Walter Kohn John Pople Prize motivation:"for his Prize motivation:"for development of the density his development of functional theory." computational methods in quantum chemistry." 9
9 The Nobel Prize in Chemistry 1998 Recognization of computational materials 2.2 Walter Kohn Prize motivation: "for his development of the density functional theory." John Pople Prize motivation: "for his development of computational methods in quantum chemistry

Ab initio calculation for materials Quantum Mechanical Calculations (=ab initio first principles) Atomic Numbers ↓ Solve the quantum mechanical equations for the electrons The key is to solve Predict physical and chemical Properties of systems the Schrδdinger equations!
Ab initio calculation for materials Quantum Mechanical Calculations (= ab initio = first principles) The key is to solve the Schrödinger equations! Atomic Numbers Solve the quantum mechanical equations for the electrons Predict physical and chemical Properties of systems 2.3

Significance of computational materials: The basic properties of materials Electronic structure Mechanical properties AlRu:cubic Lattice Bulk Young Heat of constant modulus modulus formation (A) (GPa) (GPa) (k.J/mol) Experiment 2.991 207 267, 124.1±33 3.036 260±10 Computational Theory 3.002 202 232 -126.8 Phase transition materials Prediction of new materials Cuhie phase of nitrogen 1J.Zhao,et al_Phys.Rev.Bt0.14171999 Boron:pseudopotestials C.Maithioc L.H.Yang.A.K.MeMahan. hkRe.B46,1419(1992 2 ..: i etc.i sna-B 00 ML.Eremets,V.V.Struchki H.K.Mao.R.J.Hemley. S3oce293:27217420011. pen
Significance of computational materials: The basic properties of materials 2.4 Electronic structure Mechanical properties Computational materials Phase transition Prediction of new materials etc. ∞

Significance of computational materials: Advanced application Designing Nuclear Materials Materials under extreme condition b Region of the Beh's Irtericr Lower Mecle 5nm Radiation damage processes in Cu Computational For National Security materials 1 RDX -米一Exp优 --Theory (y) 八 Upper mantle: Lower mantle MgSi2O4 MgSiO: 1500- etc. Pressure(GPa) RDX [C,H N。O
Significance of computational materials: Advanced application Computational materials etc. ∞ Designing Nuclear Materials Materials under extreme condition For National Security Upper mantle: MgSi2O4 Lower mantle MgSiO3 Radiation damage processes in Cu 2.4
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 电子科技大学:《材料设计与计算 Materials Design and Computation》课程教学资源(课件讲稿)MDC 07 Surface calculations(1/2).pdf
- 电子科技大学:《材料设计与计算 Materials Design and Computation》课程教学资源(课件讲稿)MDC 06 Bulk calculations(2/2).pdf
- 电子科技大学:《材料设计与计算 Materials Design and Computation》课程教学资源(课件讲稿)MDC 05 Bulk calculations(1/2).pdf
- 电子科技大学:《材料设计与计算 Materials Design and Computation》课程教学资源(课件讲稿)MDC 04 DFT(3/3).pdf
- 电子科技大学:《材料设计与计算 Materials Design and Computation》课程教学资源(课件讲稿)MDC 03 DFT(2/3).pdf
- 电子科技大学:《材料设计与计算 Materials Design and Computation》课程教学资源(课件讲稿)MDC 02 DFT(1/3).pdf
- 电子科技大学:《材料设计与计算 Materials Design and Computation》课程教学资源(课件讲稿)MDC 01 Introduction(张妍宁).pdf
- 《材料设计与计算 Materials Design and Computation》课程教学资源(参考书籍)DENSITY FUNCTIONAL THEORY - A Practical Introduction(DAVID S. SHOLL、JANICE A. STECKEL).pdf
- 电子科技大学:《材料分子结构分析 Molecular Structure Analysis of Materials》课程教学资源(课件讲稿)第九章 热分析 Thermal analysis.pdf
- 电子科技大学:《材料分子结构分析 Molecular Structure Analysis of Materials》课程教学资源(课件讲稿)第八章 色谱法 chromatography.pdf
- 电子科技大学:《材料分子结构分析 Molecular Structure Analysis of Materials》课程教学资源(课件讲稿)第七章 核磁共振谱 Nuclear Magnetic Resonance Spectroscopy,NMR.pdf
- 电子科技大学:《材料分子结构分析 Molecular Structure Analysis of Materials》课程教学资源(课件讲稿)第六章 拉曼光谱 Raman spectroscopy.pdf
- 电子科技大学:《材料分子结构分析 Molecular Structure Analysis of Materials》课程教学资源(课件讲稿)第五章 红外光谱 Infrared Spectroscopy.pdf
- 电子科技大学:《材料分子结构分析 Molecular Structure Analysis of Materials》课程教学资源(课件讲稿)第四章 分子荧光光谱 Molecular fluorescence spectroscopy.pdf
- 电子科技大学:《材料分子结构分析 Molecular Structure Analysis of Materials》课程教学资源(课件讲稿)第三章 紫外——可见光谱 Ultraviolet and visible spectroscopy UV—Vis.pdf
- 电子科技大学:《材料分子结构分析 Molecular Structure Analysis of Materials》课程教学资源(课件讲稿)第二章 波谱分析.pdf
- 电子科技大学:《材料分子结构分析 Molecular Structure Analysis of Materials》课程教学资源(课件讲稿)第一章 绪论(刘钰).pdf
- 电子科技大学:《薄膜材料与技术 Thin Film Material and Technology》课程教学资源(课件讲稿)第四章 金属薄膜的电导.pdf
- 电子科技大学:《薄膜材料与技术 Thin Film Material and Technology》课程教学资源(课件讲稿)第三章 薄膜的力学性质.pdf
- 电子科技大学:《薄膜材料与技术 Thin Film Material and Technology》课程教学资源(课件讲稿)第二章 真空技术.pdf
- 电子科技大学:《材料设计与计算 Materials Design and Computation》课程教学资源(课件讲稿)MDC 12 An introduction of Monte Carlo method.pdf
- 电子科技大学:《材料设计与计算 Materials Design and Computation》课程教学资源(课件讲稿)MDC 13 Monte Carlo.pdf
- 电子科技大学:《材料设计与计算 Materials Design and Computation》课程教学资源(课件讲稿)MDC 14 Modeling and Simulation in Epitaxial Growth.pdf
- 电子科技大学:《材料设计与计算 Materials Design and Computation》课程教学资源(课件讲稿)MDC 15 Examples of MCMC:Reaction-Diffusion(R-D)model.pdf
- 电子科技大学:《材料设计与计算 Materials Design and Computation》课程教学资源(课件讲稿)MDC 16 MD in Materials Studio Key Modules.pdf
- 电子科技大学:《材料设计与计算 Materials Design and Computation》课程教学资源(课件讲稿)MDC 08 Surface calculations(2/2).pdf
- 电子科技大学:《材料设计与计算 Materials Design and Computation》课程教学资源(课件讲稿)MDC 09 Materials design.pdf
- 《金陵科技学院学报》:PZT压电材料参数在ANSYS中的定义方法.pdf
- 佛山大学(佛山科学技术学院):《高分子材料加工实验》课程教学资源(参考资料,打印版)塑料、纤维、橡胶的英文缩写语.pdf
- 佛山大学(佛山科学技术学院):《高分子材料加工实验》课程教学资源(实验,打印版)高分子材料配方实例.pdf
- 佛山大学(佛山科学技术学院):《高分子材料加工实验》课程教学资源(实验,打印版)实验三十一 一种隔热涂料的制备及其性能测试实验.pdf
- 佛山大学(佛山科学技术学院):《高分子材料加工实验》课程教学资源(实验,打印版)实验三十 高分子材料3D打印实验.pdf
- 佛山大学(佛山科学技术学院):《高分子材料加工实验》课程教学资源(实验,打印版)实验二十九 硬脂酸相变储能石膏板的制备与性能研究.pdf
- 佛山大学(佛山科学技术学院):《高分子材料加工实验》课程教学资源(实验,打印版)实验十六 扫描电子显微镜法观察聚合物聚态结构.pdf
- 佛山大学(佛山科学技术学院):《高分子材料加工实验》课程教学资源(实验,打印版)实验十五 差热分析.pdf
- 佛山大学(佛山科学技术学院):《高分子材料加工实验》课程教学资源(实验,打印版)实验十四 红外光谱分析.pdf
- 佛山大学(佛山科学技术学院):《高分子材料加工实验》课程教学资源(实验,打印版)实验十三 氧指数的测定.pdf
- 佛山大学(佛山科学技术学院):《高分子材料加工实验》课程教学资源(实验,打印版)实验十二 塑料的热老化实验.pdf
- 佛山大学(佛山科学技术学院):《高分子材料加工实验》课程教学资源(实验,打印版)实验十一 马丁耐热性测试.pdf
- 佛山大学(佛山科学技术学院):《高分子材料加工实验》课程教学资源(实验,打印版)实验十 维卡软化点测定.pdf
