电子科技大学:《材料设计与计算 Materials Design and Computation》课程教学资源(课件讲稿)MDC 12 An introduction of Monte Carlo method

Review of last class Design materials using computation ·Multiscale coupling Materials Genome and materials informatics Mathematical models in material science Modeling Modeling Modeling Model preparation assumption construction solving F T Model Model Model application testing analysis
Review of last class • Design materials using computation • Multiscale coupling • Materials Genome and materials informatics • Mathematical models in material science 建模准备 建模假设 构造模型 模型求解 模型应用 模型检验 模型分析 F T T F Modeling preparation Modeling assumption Modeling construction Model solving Model analysis Model testing Model application

Moite Conko An introduc onte Carlo method LasVegasTourism.com
An introduction of Monte Carlo method

Outline ·Introduction Basics of Monte Carlo method 0 Statistical Uncertainty Improving Efficiency Techniques An Application in Surface Diffusion
Outline • Introduction • Basics of Monte Carlo method • Statistical Uncertainty • Improving Efficiency Techniques • An Application in Surface Diffusion

INTRODUCTION
INTRODUCTION

Hierarchy of time and space scale of computational simulation Continuum TIME (s) Based on SDSC Blue Horizon(SP3) Methods 512-1024 processors 1.728 Tflops peak performance 100 CPU time =1 week/processor Atomistic Mesoscale methods (ms)103 Simulation Methods Finite elements methods (us)10-6 Semi-empirical (ns)109 methods Monte Carlo Molecular dynamics (ps)1012 Ab initio tight-binding (fs)10-15 10-10 109 108 107 10-6 105 10-4 (nm) (um) LENGTH(m)
Hierarchy of time and space scale of computational simulation 6

MD&MC There are two dominant methods of simulation for complex many particle systems 1)Molecular Dynamics Solve the classical equations of motion from mechanics. Particles interact via a given interaction potential. ● Deterministic behaviour(within numerical precision). Find temporal evolution. 2)Monte Carlo Simulation ● Find mean values (expectation values)of some system components. Random behaviour from given probability distribution laws. The Monte Carlo technique is a very far spread technique, because it is not limited to systems of particles
There are two dominant methods of simulation for complex many particle systems 1) Molecular Dynamics • Solve the classical equations of motion from mechanics. • Particles interact via a given interaction potential. • Deterministic behaviour (within numerical precision). • Find temporal evolution. 2) Monte Carlo Simulation • Find mean values (expectation values) of some system components. • Random behaviour from given probability distribution laws. The Monte Carlo technique is a very far spread technique, because it is not limited to systems of particles. MD & MC

The origin of the name The name refers to the grand casino in the Principality of Monaco at Monte Carlo,which is well-known around the world as an icon of gambling AN E VENI N G IN M ON TE C ARL O
The origin of the name The name refers to the grand casino in the Principality of Monaco at Monte Carlo, which is well-known around the world as an icon of gambling

Application of Monte Carlo method CAD MeCad MCNP CAD-Modell von ITER Konversion in Monte Carlo-Geometrie Monte-Carlo-Modell (Vertikalschnitt) Nuclear reactor design Diffusion Monte Carlo 8P5 Sico24▣-130 Econometrics Radiation cancer therapy and more Oil well exploration Traffic flow
Application of Monte Carlo method Monte Carlo and more Nuclear reactor design Radiation cancer therapy Traffic flow Econometrics Oil well exploration Diffusion

Monte Carlo method This is a kind of "experimental statistics".In other branches of science,for example physics,the relationship between theory and experiment can be depicted in this way: Equipment, Experimental Theoretical Observation Physics Physics In statistics,theory developed from simple observations in card and dice games in the 17th century and later.The fully-fledged"experimental"approach,now known as Monte Carlo and thus acknowledging the origins of statistics in gambling,had to await the development of fast personal computers and random-number generators: Gambling: Cards,Dice Then Experimental Theoretical Very recent Statistics Statistics Random- Monte- Fast PCs number Carlo generators methods
Theoretical Physics Experimental Physics Equipment, Observation Gambling: Cards, Dice Fast PCs Randomnumber generators MonteCarlo methods Experimental Statistics Theoretical Statistics Then Very recent Monte Carlo method This is a kind of “experimental statistics”. In other branches of science, for example physics, the relationship between theory and experiment can be depicted in this way: In statistics, theory developed from simple observations in card and dice games in the 17th century and later. The fully-fledged “experimental” approach, now known as Monte Carlo and thus acknowledging the origins of statistics in gambling, had to await the development of fast personal computers and random-number generators:

Monte Carlo method Monte Carlo methods are stochastic techniques. > The basic concept is that games of chance can be played to approximate solutions to real world problems. >Monte Carlo methods solve non-probabilistic problems using probabilistic methods. > The Monte Carlo method provides approximate solutions to a variety of mathematical problems by performing statistical sampling experiments on a computer. > The method applies to problems with no probabilistic content as well as to those with inherent probabilistic structure
Monte Carlo methods are stochastic techniques. The basic concept is that games of chance can be played to approximate solutions to real world problems. Monte Carlo methods solve non-probabilistic problems using probabilistic methods. The Monte Carlo method provides approximate solutions to a variety of mathematical problems by performing statistical sampling experiments on a computer. The method applies to problems with no probabilistic content as well as to those with inherent probabilistic structure. Monte Carlo method
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 电子科技大学:《材料设计与计算 Materials Design and Computation》课程教学资源(课件讲稿)MDC 11 Modeling, Computation, Simulation, Designing and Screening of New Materials.pdf
- 电子科技大学:《材料设计与计算 Materials Design and Computation》课程教学资源(课件讲稿)MDC 07 Surface calculations(1/2).pdf
- 电子科技大学:《材料设计与计算 Materials Design and Computation》课程教学资源(课件讲稿)MDC 06 Bulk calculations(2/2).pdf
- 电子科技大学:《材料设计与计算 Materials Design and Computation》课程教学资源(课件讲稿)MDC 05 Bulk calculations(1/2).pdf
- 电子科技大学:《材料设计与计算 Materials Design and Computation》课程教学资源(课件讲稿)MDC 04 DFT(3/3).pdf
- 电子科技大学:《材料设计与计算 Materials Design and Computation》课程教学资源(课件讲稿)MDC 03 DFT(2/3).pdf
- 电子科技大学:《材料设计与计算 Materials Design and Computation》课程教学资源(课件讲稿)MDC 02 DFT(1/3).pdf
- 电子科技大学:《材料设计与计算 Materials Design and Computation》课程教学资源(课件讲稿)MDC 01 Introduction(张妍宁).pdf
- 《材料设计与计算 Materials Design and Computation》课程教学资源(参考书籍)DENSITY FUNCTIONAL THEORY - A Practical Introduction(DAVID S. SHOLL、JANICE A. STECKEL).pdf
- 电子科技大学:《材料分子结构分析 Molecular Structure Analysis of Materials》课程教学资源(课件讲稿)第九章 热分析 Thermal analysis.pdf
- 电子科技大学:《材料分子结构分析 Molecular Structure Analysis of Materials》课程教学资源(课件讲稿)第八章 色谱法 chromatography.pdf
- 电子科技大学:《材料分子结构分析 Molecular Structure Analysis of Materials》课程教学资源(课件讲稿)第七章 核磁共振谱 Nuclear Magnetic Resonance Spectroscopy,NMR.pdf
- 电子科技大学:《材料分子结构分析 Molecular Structure Analysis of Materials》课程教学资源(课件讲稿)第六章 拉曼光谱 Raman spectroscopy.pdf
- 电子科技大学:《材料分子结构分析 Molecular Structure Analysis of Materials》课程教学资源(课件讲稿)第五章 红外光谱 Infrared Spectroscopy.pdf
- 电子科技大学:《材料分子结构分析 Molecular Structure Analysis of Materials》课程教学资源(课件讲稿)第四章 分子荧光光谱 Molecular fluorescence spectroscopy.pdf
- 电子科技大学:《材料分子结构分析 Molecular Structure Analysis of Materials》课程教学资源(课件讲稿)第三章 紫外——可见光谱 Ultraviolet and visible spectroscopy UV—Vis.pdf
- 电子科技大学:《材料分子结构分析 Molecular Structure Analysis of Materials》课程教学资源(课件讲稿)第二章 波谱分析.pdf
- 电子科技大学:《材料分子结构分析 Molecular Structure Analysis of Materials》课程教学资源(课件讲稿)第一章 绪论(刘钰).pdf
- 电子科技大学:《薄膜材料与技术 Thin Film Material and Technology》课程教学资源(课件讲稿)第四章 金属薄膜的电导.pdf
- 电子科技大学:《薄膜材料与技术 Thin Film Material and Technology》课程教学资源(课件讲稿)第三章 薄膜的力学性质.pdf
- 电子科技大学:《材料设计与计算 Materials Design and Computation》课程教学资源(课件讲稿)MDC 13 Monte Carlo.pdf
- 电子科技大学:《材料设计与计算 Materials Design and Computation》课程教学资源(课件讲稿)MDC 14 Modeling and Simulation in Epitaxial Growth.pdf
- 电子科技大学:《材料设计与计算 Materials Design and Computation》课程教学资源(课件讲稿)MDC 15 Examples of MCMC:Reaction-Diffusion(R-D)model.pdf
- 电子科技大学:《材料设计与计算 Materials Design and Computation》课程教学资源(课件讲稿)MDC 16 MD in Materials Studio Key Modules.pdf
- 电子科技大学:《材料设计与计算 Materials Design and Computation》课程教学资源(课件讲稿)MDC 08 Surface calculations(2/2).pdf
- 电子科技大学:《材料设计与计算 Materials Design and Computation》课程教学资源(课件讲稿)MDC 09 Materials design.pdf
- 《金陵科技学院学报》:PZT压电材料参数在ANSYS中的定义方法.pdf
- 佛山科学技术学院:《高分子材料加工实验》课程教学资源(参考资料,打印版)塑料、纤维、橡胶的英文缩写语.pdf
- 佛山科学技术学院:《高分子材料加工实验》课程教学资源(实验,打印版)高分子材料配方实例.pdf
- 佛山科学技术学院:《高分子材料加工实验》课程教学资源(实验,打印版)实验三十一 一种隔热涂料的制备及其性能测试实验.pdf
- 佛山科学技术学院:《高分子材料加工实验》课程教学资源(实验,打印版)实验三十 高分子材料3D打印实验.pdf
- 佛山科学技术学院:《高分子材料加工实验》课程教学资源(实验,打印版)实验二十九 硬脂酸相变储能石膏板的制备与性能研究.pdf
- 佛山科学技术学院:《高分子材料加工实验》课程教学资源(实验,打印版)实验十六 扫描电子显微镜法观察聚合物聚态结构.pdf
- 佛山科学技术学院:《高分子材料加工实验》课程教学资源(实验,打印版)实验十五 差热分析.pdf
- 佛山科学技术学院:《高分子材料加工实验》课程教学资源(实验,打印版)实验十四 红外光谱分析.pdf
- 佛山科学技术学院:《高分子材料加工实验》课程教学资源(实验,打印版)实验十三 氧指数的测定.pdf
- 佛山科学技术学院:《高分子材料加工实验》课程教学资源(实验,打印版)实验十二 塑料的热老化实验.pdf
- 佛山科学技术学院:《高分子材料加工实验》课程教学资源(实验,打印版)实验十一 马丁耐热性测试.pdf
- 佛山科学技术学院:《高分子材料加工实验》课程教学资源(实验,打印版)实验十 维卡软化点测定.pdf
- 佛山科学技术学院:《高分子材料加工实验》课程教学资源(实验,打印版)实验九 塑化性能转矩流变仪的测定.pdf