电子科技大学:《材料设计与计算 Materials Design and Computation》课程教学资源(课件讲稿)MDC 13 Monte Carlo

Uncertainties Efficiency Scoring Monte Carlo PDFs Sampling RNGs
Monte Carlo Uncertainties Efficiency PDFs RNGs Sampling Scoring

(Pseudo)Random numbers Non-correlated sequences of numbers generated by an iterative equation. Repeatability after a very long number of random numbers. Non-uniform sequence. 0.015 ·Reproducible:“seed', 10k 0.014 1M siue. 100M 0.013 Ij+1=(aI;+c)mod m 0.012 where 0.011 a =663608941 0.01 0.009 C =0 0.008 m 232 0.007 0 0.2 0.4 0.6 0.8 X
(Pseudo) Random numbers • Non-correlated sequences of numbers generated by an iterative equation. • Repeatability after a very long number of random numbers. • Non-uniform sequence. • Reproducible: “seed”. Ij+1 = (aIj + c) mod m where: a = 663608941 c = 0 m = 232

Random numbers >Uniformly distributed numbers in [0,1] Most useful method for obtaining random numbers for computer use is a pseudo random number generator >How random are these pseudo random numbers? Anyone who considers arithmetical methods of producing random digits is,of course,in a state of sin. John von Neumann(1951)
Random Numbers Uniformly distributed numbers in [0,1] Most useful method for obtaining random numbers for computer use is a pseudo random number generator How random are these pseudo random numbers? Anyone who considers arithmetical methods of producing random digits is, of course, in a state of sin. John von Neumann (1951)

Next: Using a computer to generate random events: We need to be able to generate random numbers X with any given probability function f(x),or a given cumulative distribution c(x). 1)Uniformly distributed random numbers 2)General random numbers:can be obtained from a sequence of independent uniform random numbers
Next: Using a computer to generate random events: We need to be able to generate random numbers X with any given probability function f(x), or a given cumulative distribution c(x) . 1) Uniformly distributed random numbers 2) General random numbers: can be obtained from a sequence of independent uniform random numbers

Random number generation Random numbers,uniform distribution f(x) Generation of uniform random numbers 1/(b-a) Definition: a b a)The random variable X is uniformly distributed on the interval [a,b], PX =R [a,b] :distribution density:f()=1/(b-a)x[a,6],E R b)A sequence f(xi),iE I C N,xiE R}is called a sequence of inde- pendent identically distributed uniform random numbers :=Xi(w),with (Xi)ier with p=R [0,1],and all Xi are independent
a b f(x) 1/(b-a) Random number generation

Random numbers,uniform distribution,cont. We will tactically assume that such sequences can be generated on our computers. The issue of producing such(reproducible (!)for code verification)se- quences leads into number theory,and too far away from the applicati- ons. Typical random number generators used today have a near perfect uni- form distribution,are near independent,and have a periodicity determi- ned by the largest integer which can be represented on a given machi- ne. (Note:in massively parallel computing,with many tens of millions samp- les drawn rapidly,this periodicity may require special attention

Algorithms for producing uniform distribution: > Mid-square method > Linear congruential method Nonlinear congruential method > Inversive congruential method > Quadratic congruence method > Cubic congruence method BBS method Fibonacci method > Delayed Fibonacci Method Shift register method > Decimal method
Algorithms for producing uniform distribution: Mid-square method Linear congruential method Nonlinear congruential method Inversive congruential method Quadratic congruence method Cubic congruence method BBS method Fibonacci method Delayed Fibonacci Method Shift register method Decimal method

We will see next Any continuous distribution can be generated from uniform random numbers on [0,1] Any discrete distribution can be generated from uniform random numbers on [0,1] Hence: Any given distribution can be generated from uniform random numbers on [0,1]
We will see next: Any continuous distribution can be generated from uniform random numbers on [0,1] Any discrete distribution can be generated from uniform random numbers on [0,1] Hence: Any given distribution can be generated from uniform random numbers on [0,1]

Random numbers,general distributions Transformation from uniform random numbers to random numbers with other distributions (e.g.:Maxwellian distribution,Poisson distr.,etc...) i.e..R[0,1]-P,with distribution P specified. Measure-theory:each "measure"can be decomposed into a weighted sum of three parts: part 1.)has a continuous distribution (with a probability density) part 2.)has a discrete distribution part 3.)is a "pathological"contribution,which is required for the ab- stract mathematical case only (general measurable spaces witho- algebras,....),but which does not occur in practical Monte-Carlo app- lications

Random numbers,general distributions 1.Direct Method: 1)let-oo<a<b<oo R[0,1]:=(b-a)z+a R[a,b] Proof:transformation of random variables,see:Mathematical theory of probability. 2)Discrete uniform distribution ("Laplace distribution")on {j,j+ 1,j+n-1},j∈N R[0,1]X:=[nz]+j is Laplace distributed on {j,j+1,…j+n-1} i.e.P(X=i)=1/n for all i from fj,j+1,....j+n-1 especially:j=0,n=2:coin;j=1,n=6:dice;j=0,n=37:Roulette
1. Direct Method:
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 电子科技大学:《材料设计与计算 Materials Design and Computation》课程教学资源(课件讲稿)MDC 12 An introduction of Monte Carlo method.pdf
- 电子科技大学:《材料设计与计算 Materials Design and Computation》课程教学资源(课件讲稿)MDC 11 Modeling, Computation, Simulation, Designing and Screening of New Materials.pdf
- 电子科技大学:《材料设计与计算 Materials Design and Computation》课程教学资源(课件讲稿)MDC 07 Surface calculations(1/2).pdf
- 电子科技大学:《材料设计与计算 Materials Design and Computation》课程教学资源(课件讲稿)MDC 06 Bulk calculations(2/2).pdf
- 电子科技大学:《材料设计与计算 Materials Design and Computation》课程教学资源(课件讲稿)MDC 05 Bulk calculations(1/2).pdf
- 电子科技大学:《材料设计与计算 Materials Design and Computation》课程教学资源(课件讲稿)MDC 04 DFT(3/3).pdf
- 电子科技大学:《材料设计与计算 Materials Design and Computation》课程教学资源(课件讲稿)MDC 03 DFT(2/3).pdf
- 电子科技大学:《材料设计与计算 Materials Design and Computation》课程教学资源(课件讲稿)MDC 02 DFT(1/3).pdf
- 电子科技大学:《材料设计与计算 Materials Design and Computation》课程教学资源(课件讲稿)MDC 01 Introduction(张妍宁).pdf
- 《材料设计与计算 Materials Design and Computation》课程教学资源(参考书籍)DENSITY FUNCTIONAL THEORY - A Practical Introduction(DAVID S. SHOLL、JANICE A. STECKEL).pdf
- 电子科技大学:《材料分子结构分析 Molecular Structure Analysis of Materials》课程教学资源(课件讲稿)第九章 热分析 Thermal analysis.pdf
- 电子科技大学:《材料分子结构分析 Molecular Structure Analysis of Materials》课程教学资源(课件讲稿)第八章 色谱法 chromatography.pdf
- 电子科技大学:《材料分子结构分析 Molecular Structure Analysis of Materials》课程教学资源(课件讲稿)第七章 核磁共振谱 Nuclear Magnetic Resonance Spectroscopy,NMR.pdf
- 电子科技大学:《材料分子结构分析 Molecular Structure Analysis of Materials》课程教学资源(课件讲稿)第六章 拉曼光谱 Raman spectroscopy.pdf
- 电子科技大学:《材料分子结构分析 Molecular Structure Analysis of Materials》课程教学资源(课件讲稿)第五章 红外光谱 Infrared Spectroscopy.pdf
- 电子科技大学:《材料分子结构分析 Molecular Structure Analysis of Materials》课程教学资源(课件讲稿)第四章 分子荧光光谱 Molecular fluorescence spectroscopy.pdf
- 电子科技大学:《材料分子结构分析 Molecular Structure Analysis of Materials》课程教学资源(课件讲稿)第三章 紫外——可见光谱 Ultraviolet and visible spectroscopy UV—Vis.pdf
- 电子科技大学:《材料分子结构分析 Molecular Structure Analysis of Materials》课程教学资源(课件讲稿)第二章 波谱分析.pdf
- 电子科技大学:《材料分子结构分析 Molecular Structure Analysis of Materials》课程教学资源(课件讲稿)第一章 绪论(刘钰).pdf
- 电子科技大学:《薄膜材料与技术 Thin Film Material and Technology》课程教学资源(课件讲稿)第四章 金属薄膜的电导.pdf
- 电子科技大学:《材料设计与计算 Materials Design and Computation》课程教学资源(课件讲稿)MDC 14 Modeling and Simulation in Epitaxial Growth.pdf
- 电子科技大学:《材料设计与计算 Materials Design and Computation》课程教学资源(课件讲稿)MDC 15 Examples of MCMC:Reaction-Diffusion(R-D)model.pdf
- 电子科技大学:《材料设计与计算 Materials Design and Computation》课程教学资源(课件讲稿)MDC 16 MD in Materials Studio Key Modules.pdf
- 电子科技大学:《材料设计与计算 Materials Design and Computation》课程教学资源(课件讲稿)MDC 08 Surface calculations(2/2).pdf
- 电子科技大学:《材料设计与计算 Materials Design and Computation》课程教学资源(课件讲稿)MDC 09 Materials design.pdf
- 《金陵科技学院学报》:PZT压电材料参数在ANSYS中的定义方法.pdf
- 佛山科学技术学院:《高分子材料加工实验》课程教学资源(参考资料,打印版)塑料、纤维、橡胶的英文缩写语.pdf
- 佛山科学技术学院:《高分子材料加工实验》课程教学资源(实验,打印版)高分子材料配方实例.pdf
- 佛山科学技术学院:《高分子材料加工实验》课程教学资源(实验,打印版)实验三十一 一种隔热涂料的制备及其性能测试实验.pdf
- 佛山科学技术学院:《高分子材料加工实验》课程教学资源(实验,打印版)实验三十 高分子材料3D打印实验.pdf
- 佛山科学技术学院:《高分子材料加工实验》课程教学资源(实验,打印版)实验二十九 硬脂酸相变储能石膏板的制备与性能研究.pdf
- 佛山科学技术学院:《高分子材料加工实验》课程教学资源(实验,打印版)实验十六 扫描电子显微镜法观察聚合物聚态结构.pdf
- 佛山科学技术学院:《高分子材料加工实验》课程教学资源(实验,打印版)实验十五 差热分析.pdf
- 佛山科学技术学院:《高分子材料加工实验》课程教学资源(实验,打印版)实验十四 红外光谱分析.pdf
- 佛山科学技术学院:《高分子材料加工实验》课程教学资源(实验,打印版)实验十三 氧指数的测定.pdf
- 佛山科学技术学院:《高分子材料加工实验》课程教学资源(实验,打印版)实验十二 塑料的热老化实验.pdf
- 佛山科学技术学院:《高分子材料加工实验》课程教学资源(实验,打印版)实验十一 马丁耐热性测试.pdf
- 佛山科学技术学院:《高分子材料加工实验》课程教学资源(实验,打印版)实验十 维卡软化点测定.pdf
- 佛山科学技术学院:《高分子材料加工实验》课程教学资源(实验,打印版)实验九 塑化性能转矩流变仪的测定.pdf
- 佛山科学技术学院:《高分子材料加工实验》课程教学资源(实验,打印版)实验八 塑料熔体流动速率的测定.pdf