东北财经大学:《金融计量经济学导论》课程PPT教学课件(双语版)Chapter 8 Modelling volatility and correlation

Chapter 8 Modelling volatility and correlation
8-1 Chapter 8 Modelling volatility and correlation

8-2 1 An Excursion into Non-linearity Land Motivation: the linear structural (and time series ) models cannot explain a number of important features common to much financial data leptokurtosis:尖峰性,厚尾 volatility clustering or volatility pooling波动性集群 较卖 age effects与价格同幅上升相比,价格大幅下降后,波动性上升 levers Our "traditional"structural model could be something like: y,= Bi+Bx2+.+ Bkrk+u, or y=XB+u We also assumed u,N(0, 0
8-2 1 An Excursion into Non-linearity Land • Motivation: the linear structural (and time series) models cannot explain a number of important features common to much financial data - leptokurtosis:尖峰性,厚尾 - volatility clustering or volatility pooling 波动性集群 - leverage effects 与价格同幅上升相比,价格大幅下降后,波动性上升 较多 • Our “traditional” structural model could be something like: yt = 1 + 2x2t + ... + kxkt + ut, or y = X + u. We also assumed ut N(0, 2 )

A Sample financial asset 8-3 Returns Time series Daily s&p 500 returns for Januar y1990-De ecember 1999 Return 0.06 0.04 0.02 000 wHwwHANwH -0.02 -0.04 -0.06 -0.08 1/01/90 11/01/93 Date 9/0197
8-3 A Sample Financial Asset Returns Time Series Daily S&P 500 Returns for January 1990 – December 1999 -0.08 -0.06 -0.04 -0.02 0.00 0.02 0.04 0.06 1/01/90 11/01/93 9/01/97 Return Date

8-4 Non-linear models: a Definition Campbell, Lo and macKinlay(1997)define a non-linear data generating process as one that can be written y=f(up1,u12,…) where u, is an iid error term and f is a non-linear function. They also give a slightly more specific definition as y1=g(u1,u12,…)+uJ2(u1,u12,…) where g is a function of past error terms only and ol is variance term Models with nonlinear g( are"non-linear in mean", while those with nonlinear o() are"non-linear in variance Models can be linear in mean and variance(Clrm,arma) or linear in mean but non-linear in variance(GarCh)
8-4 Non-linear Models: A Definition • Campbell, Lo and MacKinlay (1997) define a non-linear data generating process as one that can be written yt = f(ut , ut-1 , ut-2 , …) where ut is an iid error term and f is a non-linear function. • They also give a slightly more specific definition as yt = g(ut-1 , ut-2 , …)+ ut 2 (ut-1 , ut-2 , …) where g is a function of past error terms only and 2 is a variance term. • Models with nonlinear g(•) are “non-linear in mean”, while those with nonlinear 2 (•) are “non-linear in variance”. • Models can be linear in mean and variance(CLRM,ARMA), or linear in mean but non-linear in variance(GARCH)

8-5 1.1 Types of non-linear models The linear paradigm is a useful one. Many apparently non linear relationships can be made linear by a suitable transformation On the other hand, it is likely that many relationships in finance are intrinsically non-linear. There are many types of non-linear models, e.g. ARCH/ GARCH for modelling and forecasting volatility switching models allow the behaviour of a series to follow different processes at different points in time bilinear models
8-5 1.1 Types of non-linear models • The linear paradigm is a useful one. Many apparently nonlinear relationships can be made linear by a suitable transformation. On the other hand, it is likely that many relationships in finance are intrinsically non-linear. • There are many types of non-linear models, e.g. - ARCH / GARCH for modelling and forecasting volatility - switching models : allow the behaviour of a series to follow different processes at different points in time. - bilinear models

8-6 1.2 Testing for Non-linearity The“ traditional” tools of time series analysis(acf’s, spectral analysis)may find no evidence that we could use a linear model, but the data may still not be independent. General test( Portmanteau多用途 tests) for non- - linear dependence have been developed. The simplest is Ramseys RESET test (chapter 4) Many other non-linearity tests are available the bds test(19:检验数据是否是纯随机的。 Eview4提供 The bispectrum test(Hinich, 1982) bicorrelation test(Hsieh, 1993; Hinich, 1996) One particular non-linear model that has proved very useful in finance is the arch model due to Engle 1982. Specific tests to find specific types of non-linear structure
8-6 1.2 Testing for Non-linearity • The “traditional” tools of time series analysis (acf’s, spectral analysis) may find no evidence that we could use a linear model, but the data may still not be independent. • General test (Portmanteau 多 用 途 tests) for non-linear dependence have been developed. The simplest is Ramsey’s RESET test (chapter 4). • Many other non-linearity tests are available. the BDS test(1996) :检验数据是否是纯随机的。Eview4提供 The bispectrum test (Hinich,1982) bicorrelation test (Hsieh, 1993; Hinich,1996) • One particular non-linear model that has proved very useful in finance is the ARCH model due to Engle (1982). • Specific tests : to find specific types of non-linear structure

8-7 2 Models for volatility ·建模和预测股票市场波动性已经成为过去十年中实证和理论研 究中的一个重要主题 波动性是金融中最重要的概念之一。通常用收益的标准差或方 差来衡量。波动性常常用于金融资产的总体风险的粗略测量 许多测量市场风险的vaR模型需要估计和预测波动性参数,在 Black-Scholes期权定价模型中也需要利用股票市场价格的波动 性 ·描述波动性典型特征的一些模型 Historical volatility历史的波动性:计算过去一段时期的收益方差,并用 于未来的波动性预测。可以作为其他方法的比较基准 benchmark plied volatility models在给定期权价格的条件下,可以计算出基础资 产收益波动性的市场预测值。 指数加权移动平均模型EWMA近期数据对波动性的预测有更大的影响 自回归波动性模型:对代表波动性的序列建立ARMA模型并用于预测
8-7 2 Models for volatility • 建模和预测股票市场波动性已经成为过去十年中实证和理论研 究中的一个重要主题. • 波动性是金融中最重要的概念之一。通常用收益的标准差或方 差来衡量。波动性常常用于金融资产的总体风险的粗略测量。 • 许多测量市场风险的VaR模型需要估计和预测波动性参数,在 Black-Scholes期权定价模型中也需要利用股票市场价格的波动 性。 • 描述波动性典型特征的一些模型 – Historical volatility 历史的波动性:计算过去一段时期的收益方差,并用 于未来的波动性预测。可以作为其他方法的比较基准benchmark – Implied volatility models:在给定期权价格的条件下,可以计算出基础资 产收益波动性的市场预测值。 – 指数加权移动平均模型 EWMA: 近期数据对波动性的预测有更大的影响 – 自回归波动性模型: 对代表波动性的序列建立ARMA模型并用于预测

8-8 Heteroscedasticity revisited An example of a structural model is V=B1+ A2x2t+ B3x3t+ B4x4t+ur with u, n(o, ox). The assumption that the variance of the errors is constant is known as homoscedasticity, i. e Var(u=o What if the variance of the errors is not constant heteroscedasticity would imply that standard error estimates could be wrong. Is the variance of the errors likely to be constant over time? not for financial data
8-8 Heteroscedasticity Revisited • An example of a structural model is with ut N(0, ). The assumption that the variance of the errors is constant is known as homoscedasticity, i.e. Var (ut ) = . • What if the variance of the errors is not constant? - heteroscedasticity - would imply that standard error estimates could be wrong. • Is the variance of the errors likely to be constant over time? Not for financial data. u 2 u 2 yt = 1 + 2 x 2t + 3 x 3t + 4 x 4t + u t

3 Autoregressive Conditionally 8-9 Heteroscedastic (ARCH) Models a model which does not assume that the variance is constant the definition of the conditional variance of u. ariu, u,i u t-1 )=El(u E(uD)2 u,p, ur2 We usually assume that e(up=0 SO var(u2|u1,2…)=E t1,“t2 What could the current value of the variance of the errors plausibly depend upon? Previous squared error terms. This leads to the autoregressive conditionally heteroscedastic model for the variance of the errors. This is known as an arCH(1) model
8-9 3 Autoregressive Conditionally Heteroscedastic (ARCH) Models • a model which does not assume that the variance is constant. • the definition of the conditional variance of ut : = Var(ut ut-1 , ut-2 ,...) = E[(ut -E(ut ))2 ut-1 , ut-2 ,...] We usually assume that E(ut ) = 0 so = Var(ut ut-1 , ut-2 ,...) = E[ut 2 ut-1 , ut-2 ,...]. • What could the current value of the variance of the errors plausibly depend upon? Previous squared error terms. • This leads to the autoregressive conditionally heteroscedastic model for the variance of the errors: = 0 + 1 • This is known as an ARCH(1) model. t 2 t 2 t 2 ut−1 2

8-10 ARCH Models(contd) One example of a full model would be D,=B1+B2x2t+.+Bkk +u, u,N(O, o) where ot We can easily extend this to the general case where the error variance depends on g lags of squared errors: o=a+a,u +au2+... +a This is an arCH(@ model. Instead of calling the variance ot, in the literature it is usually called h. so the model is D,=B1+ Bix2r+.+ BkXkt+ut, u N(o,h) where h,=0+a1 u-1+a2 u 22+. +aa u-q
8-10 ARCH Models (cont’d) • One example of a full model would be yt = 1 + 2x2t + ... + kxkt + ut , ut N(0, ) where = 0 + 1 • We can easily extend this to the general case where the error variance depends on q lags of squared errors: = 0 + 1 +2 +...+q • This is an ARCH(q) model. • Instead of calling the variance , in the literature it is usually called ht , so the model is yt = 1 + 2x2t + ... + kxkt + ut , ut N(0,ht ) where ht = 0 + 1 +2 +...+q t 2 t 2 t 2 ut−1 2 ut −q 2 ut −q 2 t 2 2 t −1 u 2 ut −2 2 t −1 u 2 t −2 u
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 东北财经大学:《金融计量经济学导论》课程PPT教学课件(双语版)Chapter 7 Modelling long-run relationship in finance.ppt
- 东北财经大学:《金融计量经济学导论》课程PPT教学课件(双语版)Chapter 6 Multivariate models.ppt
- 东北财经大学:《金融计量经济学导论》课程PPT教学课件(双语版)Chapter 5 Univariate time series modelling and forecasting.ppt
- 东北财经大学:《金融计量经济学导论》课程PPT教学课件(双语版)Chapter 4 Further issues with the classical linear regression model.ppt
- 东北财经大学:《金融计量经济学导论》课程PPT教学课件(双语版)Chapter 3 A brief overview of the classical linear regression model.ppt
- 东北财经大学:《金融计量经济学导论》课程PPT教学课件(双语版)Chapter 2 Econometric packages for modelling financial data.ppt
- 东北财经大学:《金融计量经济学导论》课程PPT教学课件(双语版)Chapter 1 Introduction(主讲:陈磊).ppt
- 《经济学方法论》PDF电子书(共十五章).pdf
- 云南大学经济学院:《国际贸易理论与政策》课程各章试题库.doc
- 云南大学经济学院:《国际贸易理论与政策》课程授课教案(讲义,共十二章).doc
- 云南大学经济学院:《国际贸易理论与政策》课程教学大纲 International Trade Theory and Policy.doc
- 云南大学经济学院:《国际贸易理论与政策》课程PPT教学课件(英文版)课程PPT教学课件(共十二章).ppt
- 云南大学经济学院:《国际贸易理论与政策》课程PPT教学课件(中文版)课程PPT教学课件(共十二章).ppt
- 西南民族大学:《微观经济学》复习题.ppt
- 西南民族大学:《微观经济学》第五章 生产成本.ppt
- 西南民族大学:《微观经济学》第十四章 一般均衡与经济效益.ppt
- 西南民族大学:《微观经济学》第十三章 市场失灵.ppt
- 西南民族大学:《微观经济学》第十二章 劳动市场.ppt
- 西南民族大学:《微观经济学》第十一章 利率和现金流贴现分析.ppt
- 西南民族大学:《微观经济学》第十章 垄断竞争和寡头垄断.ppt
- 《计量经济学》一元线性回归模型的参数估计.ppt
- 《计量经济学》一元线性回归模型的统计检验.ppt
- 《计量经济学》一元线性回归分析的应用:预测问题.ppt
- 《计量经济学》实例:时间序列问题.ppt
- 《计量经济学》多元线性回归模型的估计.ppt
- 《计量经济学》多元线性回归模型的统计检验.ppt
- 《计量经济学》多元线性回归模型的预测.ppt
- 《计量经济学》回归模型的其他函数形式.ppt
- 《计量经济学》受约束回归.ppt
- 《计量经济学》序列相关性 Serial Correlation.ppt
- 《计量经济学》多重共线性 Multi-Collinearity.ppt
- 《计量经济学》随机解释变量问题.ppt
- 《计量经济学》第五章 经典单方程计量经济学模型:专门问题 §5.2 滞后变量模型.ppt
- 《计量经济学》第五章 经典单方程计量经济学模型:专门问题 §5.3 模型设定偏误问题.ppt
- 《计量经济学》第五章 经典单方程计量经济学模型:专门问题 §5.4 从传统建模理论到约化建模理论.ppt
- 《计量经济学》第二章 经典单方程计量经济学模型:一元线性回归模型 §2.1 回归分析概述.ppt
- 《计量经济学》第三章 经典单方程计量经济学模型 多元线性回归模型.ppt
- 《计量经济学》第四章 经典单方程计量经济学模型:放宽基本假定的模型 §4.1 异方差性.ppt
- 《计量经济学》第五章 经典单方程计量经济学模型:专门问题 §5.1 虚拟变量模型.ppt
- 《计量经济学》《Econometrics》《经济计量学》第一章 绪论.ppt