《商务统计学概论》(英文版) CHAPTER 16 Multiple regression and Correlation

Chapter 16 Multiple regression and Correlation to accompany Introduction to business statistics fourth edition by ronald M. Weiers Presentation by Priscilla Chaffe-Stengel Donald n tenge o 2002 The Wadsworth Group
Chapter 16 Multiple Regression and Correlation to accompany Introduction to Business Statistics fourth edition, by Ronald M. Weiers Presentation by Priscilla Chaffe-Stengel Donald N. Stengel © 2002 The Wadsworth Group

l Chapter 16 Learning objectives Obtain and interpret the multiple regression equation Make estimates using the regression model point value of the dependent variable, y Intervals > Confidence interval for the conditional mean of Prediction interval for an individual y observation Conduct and interpret hypothesis tests on the Coefficient of multiple determination Partial regression coefficients o 2002 The Wadsworth Group
Chapter 16 Learning Objectives • Obtain and interpret the multiple regression equation • Make estimates using the regression model: – Point value of the dependent variable, y – Intervals: »Confidence interval for the conditional mean of y »Prediction interval for an individual y observation • Conduct and interpret hypothesis tests on the – Coefficient of multiple determination – Partial regression coefficients © 2002 The Wadsworth Group

l Chapter 16-Key Terms Partial regression coefficients Multiple standard error of the estimate Conditional mean of Individual y observation Coefficient of multiple determination Coefficient of partial determination Global f-test Standard deviation of b o 2002 The Wadsworth Group
Chapter 16 - Key Terms • Partial regression coefficients • Multiple standard error of the estimate • Conditional mean of y • Individual y observation • Coefficient of multiple determination • Coefficient of partial determination • Global F-test • Standard deviation of bi © 2002 The Wadsworth Group

l The Multiple regression model ● Probabilistic model Bo+β1x1+β2x2+…+Bkx+ where yi=a value of the dependent variable, y Bo= the y-intercept Mli air., ki= individual values of the independent variables, xl x2,.,x B1,B2灬…,Bk= the partial regression coefficients for the independent variables, x1x,.,k Ci= random error, the residual o 2002 The Wadsworth Group
The Multiple Regression Model • Probabilistic Model yi = b0 + b1x1i + b2x2i + ... + bkxki + ei where yi = a value of the dependent variable, y b0 = the y-intercept x1i , x2i , ... , xki = individual values of the independent variables, x1 , x2 , ... , xk b1 , b2 ,... , bk = the partial regression coefficients for the independent variables, x1 , x2 , ... , xk ei = random error, the residual © 2002 The Wadsworth Group

l The Multiple regression model Sample regression equation bo+b1x1+b2x2+…+bk where J, the predicted value of the dependent variable, y, given the values of xi x2,.,xk bo= the y-intercept 1讠2i xki= individual values of the independent variables, Iv x,,xp 1.., bk=the partial regression coefficients for the independent variables, x1 x,.,xk o 2002 The Wadsworth Group
The Multiple Regression Model • Sample Regression Equation = b0 + b1x1i + b2x2i + ... + bkxki where = the predicted value of the dependent variable, y, given the values of x1 , x2 , ... , xk b0 = the y-intercept x1i , x2i , ... , xki = individual values of the independent variables, x1 , x2 , ... , xk b1 , b2 , ... , bk = the partial regression coefficients for the independent variables, x1 , x2 , ... , xk y ? i y ? i © 2002 The Wadsworth Group

l The Amount of Scatter in the data The multiple standard error of the estimate (-)2 n-k-1 where 1; =each observed value of y in the data set i,=the value of y that would have been estimated from the regression equation n= the number of data values in the set k=the number of independent(a) variables measures the dispersion of the data points around the regression hyperplane o 2002 The Wadsworth Group
The Amount of Scatter in the Data • The multiple standard error of the estimate where yi = each observed value of y in the data set = the value of y that would have been estimated from the regression equation n = the number of data values in the set k = the number of independent (x) variables measures the dispersion of the data points around the regression hyperplane. s e = (y i –y ˆ i )2 n–k–1 y ? i © 2002 The Wadsworth Group

I Approximating a Confidence Interval for a Mean of y a reasonable estimate for interval bounds on the conditional mean of y given various x values is generated by 予士 where the estimated value of y based on the set of x values provided t= critical t value,(1-a)% confidence, df=n-k-1 s, the multiple standard error of the estimate o 2002 The Wadsworth Group
Approximating a Confidence Interval for a Mean of y • A reasonable estimate for interval bounds on the conditional mean of y given various x values is generated by: where = the estimated value of y based on the set of x values provided t = critical t value, (1–a)% confidence, df = n – k – 1 se = the multiple standard error of the estimate n e s y ˆ ±t× y ? © 2002 The Wadsworth Group

I Approximating a prediction Interval for an Individualy value a reasonable estimate for interval bounds on an individual y value given various x values is generated by t where i= the estimated value of y based on the set of x values provided t=critical t value, (1-0)% confidence df=n-k s,= the multiple standard error of the estimate o 2002 The Wadsworth Group
Approximating a Prediction Interval for an Individual y Value • A reasonable estimate for interval bounds on an individual y value given various x values is generated by: where = the estimated value of y based on the set of x values provided t = critical t value, (1–a)% confidence, df = n – k – 1 se = the multiple standard error of the estimate y ˆ ±t×s e y ? © 2002 The Wadsworth Group

l Coefficient of multiple Determination The proportion of variance in y that is explained by the multiple regression equation is given by ∑(y.-y R=1 21 SSE SSR ∑(y.-y SSTSST o 2002 The Wadsworth Group
Coefficient of Multiple Determination • The proportion of variance in y that is explained by the multiple regression equation is given by: R 2 = 1– S(y i –y ˆ i ) 2 S(y i –y ) 2 = 1 – SSE SST = SSR SST © 2002 The Wadsworth Group

l Coefficients of partial Determination For each independent variable, the coefficient of partial determination denotes the proportion of total variation in y that is explained by that one independent variable alone, holding the values of all other independent variables constant. The coefficients are reported on computer printouts o 2002 The Wadsworth Group
Coefficients of Partial Determination • For each independent variable, the coefficient of partial determination denotes the proportion of total variation in y that is explained by that one independent variable alone, holding the values of all other independent variables constant. The coefficients are reported on computer printouts. © 2002 The Wadsworth Group
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《商务统计学概论》(英文版) CHAPTER 15 Simple linear regression and correlation.ppt
- 《商务统计学概论》(英文版) CHAPTER 14 Nonparametric methods.ppt
- 《商务统计学概论》(英文版) CHAPTER 13 Chi-Square Applications.ppt
- 《商务统计学概论》(英文版) CHAPTER 12 Analysis of variance Tests.ppt
- 《商务统计学概论》(英文版) CHAPTER 11: Hypothesis Testing Involving Two Sample Means or Proportions.ppt
- 《商务统计学概论》(英文版) CHAPTER 10: Hypothesis Testing, One Population Mean or Proportion.ppt
- 《商务统计学概论》(英文版) CHAPTER 9 Estimation from Sample data.ppt
- 《商务统计学概论》(英文版) CHAPTER 8 Sampling distributions.ppt
- 《商务统计学概论》(英文版) CHAPTER 7 Continuous Probability distributions.ppt
- 《商务统计学概论》(英文版)CHAPTER 6 Discrete probability distributions.ppt
- 《商务统计学概论》(英文版) ChAPTER 5 Probability: Review of basic concepts.ppt
- 《商务统计学概论》(英文版) CHAPTER 4 Data collection and sampling methods.ppt
- 《商务统计学概论》(英文版) CHAPTER 3 Statistical Description of data.ppt
- 《商务统计学概论》(英文版) CHAPTER 2 Visual description of data.ppt
- 《商务统计学概论》(英文版) CHAPTER 1 A Preview of Business statistics.ppt
- 山东滨州职业学院:《统计基础》第8章 统计指数.doc
- 山东滨州职业学院:《统计基础》第9章 时间数列分析.doc
- 山东滨州职业学院:《统计基础》第7章 相关与回归分析.doc
- 山东滨州职业学院:《统计基础》第6章 抽样调查.doc
- 山东滨州职业学院:《统计基础》第5章 数据分布特征描述.doc
- 《商务统计学概论》(英文版) CHAPTER 17 Model Building.ppt
- 《商务统计学概论》(英文版) CHAPTER 18 Models for Time Series and Forecasting.ppt
- 《商务统计学概论》(英文版) CHAPTER 19: Decision Theory.ppt
- 《商务统计学概论》(英文版) CHAPTER 20 Total Quality management.ppt
- 北京大学:《实用生物统计》课程教学资源(PPT课件讲稿)第一章 概率论基础.ppt
- 《社会统计学》教学大纲.doc
- 厦门大学:《统计学概论》课程教学资源(PPT课件讲稿)第二章 统计数据的搜集、整理和显示.ppt
- 厦门大学:《统计学概论》课程教学资源(PPT课件讲稿)第三章 统计描述.ppt
- 厦门大学:《统计学概论》课程教学资源(PPT课件讲稿)第四章 抽样分布与参数估计.ppt
- 厦门大学:《统计学概论》课程教学资源(PPT课件讲稿)第五章 假设检验.ppt
- 厦门大学:《统计学概论》课程教学资源(PPT课件讲稿)第六章 方差分析.ppt
- 厦门大学:《统计学概论》课程教学资源(PPT课件讲稿)第七章 相关与回归分析.ppt
- 厦门大学:《统计学概论》课程教学资源(PPT课件讲稿)第九章 统计决策.ppt
- 厦门大学:《统计学概论》课程教学资源(PPT课件讲稿)第十一章 统计综合评价.ppt
- 厦门大学:《统计学概论》课程教学资源(PPT课件讲稿)第十章 统计指数.ppt
- 厦门大学:《统计学概论》课程教学资源(PPT课件讲稿)第八章 时间序列分析.ppt
- 厦门大学:《统计学概论》课程教学资源(PPT课件讲稿)第十二章 国民经济统计概述.ppt
- 厦门大学:《统计学概论》课程教学资源(PPT课件讲稿)第一章 绪论(主编:曾五一).ppt
- 厦门大学:《统计学概论》课程教学资源(讲义)统计学课程介绍.doc
- 《社会统计学概论》第一次作业.doc