《商务统计学概论》(英文版) CHAPTER 15 Simple linear regression and correlation

CHAPTER 15 Simple linear regression and correlation to accompany Introduction to business statistics fourth edition by ronald M. Weiers Presentation by Priscilla Chaffe-Stengel Donald n tenge o 2002 The Wadsworth Group
CHAPTER 15 Simple Linear Regression and Correlation to accompany Introduction to Business Statistics fourth edition, by Ronald M. Weiers Presentation by Priscilla Chaffe-Stengel Donald N. Stengel © 2002 The Wadsworth Group

l Chapter 15-Learning objectives Determine the least squares regression equation, and make point and interval estimates for the dependent variable Determine and interpret the value of the Coefficient of correlation Coefficient of determination Construct confidence intervals and carry out hypothesis tests involving the slope of the regression line o 2002 The Wadsworth Group
Chapter 15 - Learning Objectives • Determine the least squares regression equation, and make point and interval estimates for the dependent variable. • Determine and interpret the value of the: – Coefficient of correlation. – Coefficient of determination. • Construct confidence intervals and carry out hypothesis tests involving the slope of the regression line. © 2002 The Wadsworth Group

l Chapter 15-Key Terms · Direct or inverse Confidence interval relationships or the mean Least squares Prediction interval for regression mode an individual value Standard error of the Coefficient of estimate, s correlation ° Point estimate using· Coefficient of the regression model determination o 2002 The Wadsworth Group
Chapter 15 - Key Terms • Direct or inverse relationships • Least squares regression model • Standard error of the estimate, sy,x • Point estimate using the regression model • Confidence interval for the mean • Prediction interval for an individual value • Coefficient of correlation • Coefficient of determination © 2002 The Wadsworth Group

l Chapter 15-Key concep Regression analysis generates a best-fit equation that can be used in predicting the values of the dependent variable as a function of the independent variable o 2002 The Wadsworth Group
Chapter 15 - Key Concept Regression analysis generates a “best-fit” mathematical equation that can be used in predicting the values of the dependent variable as a function of the independent variable. © 2002 The Wadsworth Group

l Direct us Inverse relationships Direct relationship As x increases, y increases The graph of the model rises from left to right The slope of the linear model is positive Inverse relationship As x increases, y decreases The graph of the model falls from left to right The slope of the linear model is negative o 2002 The Wadsworth Group
Direct vs Inverse Relationships • Direct relationship: – As x increases, y increases. – The graph of the model rises from left to right. – The slope of the linear model is positive. • Inverse relationship: – As x increases, y decreases. – The graph of the model falls from left to right. – The slope of the linear model is negative. © 2002 The Wadsworth Group

l Simple linear regression model Probabilistic Model: yi=B0+ Bx;+ a where yi=a value of the dependent variable, y x i=a value of the independent variable, x Bo= the y-intercept of the regression line Bi=the slope of the regression line 8= random error the residual Deterministic model: botb where and ii is the predicted value of y in contrast to the actual value of 1/ o 2002 The Wadsworth Group
Simple Linear Regression Model • Probabilistic Model: yi = b0 + b1xi + ei where yi = a value of the dependent variable, y xi = a value of the independent variable, x b0 = the y-intercept of the regression line b1 = the slope of the regression line ei = random error, the residual • Deterministic Model: = b0 + b1xi where and is the predicted value of y in contrast to the actual value of y. y ? i b 0 b 0 , b 1 b 1 y ? i © 2002 The Wadsworth Group

l Determining the least squares Regression line Least squares regression lines b. b Slope ∑xy;)-n衩 (∑x2)-n y-intercept bo =y? 6, x o 2002 The Wadsworth Group
Determining the Least Squares Regression Line • Least Squares Regression Line: – Slope – y-intercept y ˆ = b 0 + b 1 x 1 b 1 = ( x i y i ) – n×x ×y ( x i 2) – n×x 2 b 0 = y ? b 1 x © 2002 The Wadsworth Group

l Simple linear regression An example Problem 15.9: For a sample of 8 employees a personnel director has collected the following data on ownership of company stock, 1, versus years with the firm, x 61214 91315 y300408560252288650630522 (a) determine the least squares regression line and interpret its slope.(b)For an employee who has been with the firm 10 years, what is the predicted number of shares of stock owned? o 2002 The Wadsworth Group
Simple Linear Regression: An Example • Problem 15.9: For a sample of 8 employees, a personnel director has collected the following data on ownership of company stock, y, versus years with the firm, x. x 6 12 14 6 9 13 15 9 y 300 408 560 252 288 650 630 522 (a) Determine the least squares regression line and interpret its slope. (b) For an employee who has been with the firm 10 years, what is the predicted number of shares of stock owned? © 2002 The Wadsworth Group

Ⅷ An example,,cont. 6300 1800 36 12408 4896 144 14560 7840 196 6252 1512 36 9288 2592 81 13650 8450 169 15630 9450 225 9522 4698 81 Mean:10.545125 Sum. 41,238 968 o 2002 The Wadsworth Group
An Example, cont. x y x•y x 2 6 300 1800 36 12 408 4896 144 14 560 7840 196 6 252 1512 36 9 288 2592 81 13 650 8450 169 15 630 9450 225 9 522 4698 81 Mean: 10.5 451.25 Sum: 41,238 968 © 2002 The Wadsworth Group

Ⅷ An example,,cont. Slope (∑xy1)-n米41238-80.5)45125 38.7558 2)-nX2 968-810.5 °y- ntercept: y?b1x=45125?(38758)(10.5)=44.3140 So the best-fit linear model, rounding to the nearest tenth is j=44.3140+38.7558x≈44.3+38.8x o 2002 The Wadsworth Group
An Example, cont. • Slope: • y-Intercept: So the “best-fit” linear model, rounding to the nearest tenth, is: b 1 = ( x i y i ) – n×x ×y ( x i 2) – n×x 2 = 41238 – 8×(10.5)×(451.25) 968 - 8×(10.5) 2 = 38.7558 b 0 = y ? b 1 x = 451.25 ? (38.7558)(10.5) = 44.3140 y ˆ = 44.3140 + 38.7558x 44.3 + 38.8x © 2002 The Wadsworth Group
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《商务统计学概论》(英文版) CHAPTER 14 Nonparametric methods.ppt
- 《商务统计学概论》(英文版) CHAPTER 13 Chi-Square Applications.ppt
- 《商务统计学概论》(英文版) CHAPTER 12 Analysis of variance Tests.ppt
- 《商务统计学概论》(英文版) CHAPTER 11: Hypothesis Testing Involving Two Sample Means or Proportions.ppt
- 《商务统计学概论》(英文版) CHAPTER 10: Hypothesis Testing, One Population Mean or Proportion.ppt
- 《商务统计学概论》(英文版) CHAPTER 9 Estimation from Sample data.ppt
- 《商务统计学概论》(英文版) CHAPTER 8 Sampling distributions.ppt
- 《商务统计学概论》(英文版) CHAPTER 7 Continuous Probability distributions.ppt
- 《商务统计学概论》(英文版)CHAPTER 6 Discrete probability distributions.ppt
- 《商务统计学概论》(英文版) ChAPTER 5 Probability: Review of basic concepts.ppt
- 《商务统计学概论》(英文版) CHAPTER 4 Data collection and sampling methods.ppt
- 《商务统计学概论》(英文版) CHAPTER 3 Statistical Description of data.ppt
- 《商务统计学概论》(英文版) CHAPTER 2 Visual description of data.ppt
- 《商务统计学概论》(英文版) CHAPTER 1 A Preview of Business statistics.ppt
- 山东滨州职业学院:《统计基础》第8章 统计指数.doc
- 山东滨州职业学院:《统计基础》第9章 时间数列分析.doc
- 山东滨州职业学院:《统计基础》第7章 相关与回归分析.doc
- 山东滨州职业学院:《统计基础》第6章 抽样调查.doc
- 山东滨州职业学院:《统计基础》第5章 数据分布特征描述.doc
- 山东滨州职业学院:《统计基础》第3章 统计数据的整理与显示.doc
- 《商务统计学概论》(英文版) CHAPTER 16 Multiple regression and Correlation.ppt
- 《商务统计学概论》(英文版) CHAPTER 17 Model Building.ppt
- 《商务统计学概论》(英文版) CHAPTER 18 Models for Time Series and Forecasting.ppt
- 《商务统计学概论》(英文版) CHAPTER 19: Decision Theory.ppt
- 《商务统计学概论》(英文版) CHAPTER 20 Total Quality management.ppt
- 北京大学:《实用生物统计》课程教学资源(PPT课件讲稿)第一章 概率论基础.ppt
- 《社会统计学》教学大纲.doc
- 厦门大学:《统计学概论》课程教学资源(PPT课件讲稿)第二章 统计数据的搜集、整理和显示.ppt
- 厦门大学:《统计学概论》课程教学资源(PPT课件讲稿)第三章 统计描述.ppt
- 厦门大学:《统计学概论》课程教学资源(PPT课件讲稿)第四章 抽样分布与参数估计.ppt
- 厦门大学:《统计学概论》课程教学资源(PPT课件讲稿)第五章 假设检验.ppt
- 厦门大学:《统计学概论》课程教学资源(PPT课件讲稿)第六章 方差分析.ppt
- 厦门大学:《统计学概论》课程教学资源(PPT课件讲稿)第七章 相关与回归分析.ppt
- 厦门大学:《统计学概论》课程教学资源(PPT课件讲稿)第九章 统计决策.ppt
- 厦门大学:《统计学概论》课程教学资源(PPT课件讲稿)第十一章 统计综合评价.ppt
- 厦门大学:《统计学概论》课程教学资源(PPT课件讲稿)第十章 统计指数.ppt
- 厦门大学:《统计学概论》课程教学资源(PPT课件讲稿)第八章 时间序列分析.ppt
- 厦门大学:《统计学概论》课程教学资源(PPT课件讲稿)第十二章 国民经济统计概述.ppt
- 厦门大学:《统计学概论》课程教学资源(PPT课件讲稿)第一章 绪论(主编:曾五一).ppt
- 厦门大学:《统计学概论》课程教学资源(讲义)统计学课程介绍.doc