北京外国语大学:《运筹学 Operations Research》课程教学资源(课件讲稿)整数规划 Integer Programming

Integer Programming Xi Chen Department of Management Science and Engineering International Business School Beijing Foreign Studies University 4口48+4三4至,至)只0 Xi Chen (chenxi0109@bfsu.edu.cn) Integer Programming 1/42
Integer Programming Xi Chen Department of Management Science and Engineering International Business School Beijing Foreign Studies University Xi Chen (chenxi0109@bfsu.edu.cn) Integer Programming 1 / 42

Introduction Introduction The Branch-and-Bound Method Implicit Enumeration The Cutting Plane Algorithm 4口,4得+4艺至,三风0 Xi Chen (chenxi0109@bfsu.edu.cn) Integer Programming 2/42
Introduction 1 Introduction 2 The Branch-and-Bound Method 3 Implicit Enumeration 4 The Cutting Plane Algorithm Xi Chen (chenxi0109@bfsu.edu.cn) Integer Programming 2 / 42

Introduction Definition 1.1 An integer programming problem (IP)is an LP in which some or all of the variables are required to be non-negative integers,i.e.,the Divisibility Assumption in LP does not hold. A pure integer programming problem max3x为+2x2 s.t.x1+9≤6灯,x2≥0,灯,2 integer. A mixed integer programming problem max3x灯+2x2 s.t.+x2≤6,为,x2≥0,x1 integer.. A 0-1 integer programming problem max X1 -X2 s.t. x1+2x2≤2,2x灯-2≤1 ,X9=0or1. Xi Chen (chenxi0109@bfsu.edu.cn) Integer Programming 3/42
Introduction Definition 1.1 An integer programming problem (IP) is an LP in which some or all of the variables are required to be non-negative integers, i.e., the Divisibility Assumption in LP does not hold. A pure integer programming problem max 3x1 + 2x2 s.t. x1 + x2 ≤ 6 x1, x2 ≥ 0, x1, x2 integer. A mixed integer programming problem max 3x1 + 2x2 s.t. x1 + x2 ≤ 6, x1, x2 ≥ 0, x1 integer. A 0-1 integer programming problem max x1 − x2 s.t. x1 + 2x2 ≤ 2, 2x1 − x2 ≤ 1, x1, x2 = 0 or 1. Xi Chen (chenxi0109@bfsu.edu.cn) Integer Programming 3 / 42

Introduction Definition 1.2 The LP obtained by omitting all integer or 0-1 constraints on variables is called the LP relaxation of the IP. The feasible region for any IP must be contained in the feasible region for the corresponding LP relaxation.For any IP that is a max problem,this implies that Optimal z-value for LP relaxation optimal z-value for IP. Consider max21x为+119 33 s.t.7x+4x2≤13, 灯,x2≥0,灯,2 integer. 7+413 An IP is very difficult to solve because 1 o Enumeration may be impossible. Roundoff may be wrong or infeasible. 05 1D15.20253D )Q0 Xi Chen (chenxi0109@bfsu.edu.cn) Integer Programming 4/42
Introduction Definition 1.2 The LP obtained by omitting all integer or 0 − 1 constraints on variables is called the LP relaxation of the IP. The feasible region for any IP must be contained in the feasible region for the corresponding LP relaxation. For any IP that is a max problem, this implies that Optimal z-value for LP relaxation ≥ optimal z-value for IP. Consider max 21x1 + 11x2 s.t. 7x1 + 4x2 ≤ 13, x1, x2 ≥ 0, x1, x2 integer. An IP is very difficult to solve because Enumeration may be impossible. Roundoff may be wrong or infeasible. Xi Chen (chenxi0109@bfsu.edu.cn) Integer Programming 4 / 42

Introduction Example 1 Gandhi Cloth Company is capable of manufacturing three types of clothing:shirts,shorts,and pants.The manufacture of each type of clothing requires that Gandhi have the appropriate type of machinery available.The machinery needed to manufacture each type of clothing must be rented at the following rates:shirt machinery,$200 per week; shorts machinery,$150 per week;pants machinery,$100 per week.The manufacture of each type of clothing also requires the amounts of cloth and labor shown in the left table.Each week,150 hours of labor and 160 sq yd of cloth are available.The variable unit cost and selling price for each type of clothing are shown in the right table. Formulate an IP whose solution will maximize Gandhi's weekly profits. Resource Reguirements lor Gandhi Reveue ad Costtrmatioor Gandhi Clothing Labor Cloth Clothing Salea Variable Hours】 (Square Yards) Type Price (S] Co时(S) Shirt 4 Shirt 12 6 Shorts 2 Shorts Pants 6 Pants 15 )Q0 Xi Chen (chenxi0109@bfsu.edu.cn) Integer Programming 5/42
Introduction Example 1 Gandhi Cloth Company is capable of manufacturing three types of clothing: shirts, shorts, and pants. The manufacture of each type of clothing requires that Gandhi have the appropriate type of machinery available. The machinery needed to manufacture each type of clothing must be rented at the following rates: shirt machinery, $200 per week; shorts machinery, $150 per week; pants machinery, $100 per week. The manufacture of each type of clothing also requires the amounts of cloth and labor shown in the left table. Each week, 150 hours of labor and 160 sq yd of cloth are available. The variable unit cost and selling price for each type of clothing are shown in the right table. Formulate an IP whose solution will maximize Gandhi’s weekly profits. Xi Chen (chenxi0109@bfsu.edu.cn) Integer Programming 5 / 42

Introduction Define x1=number of shirts produced each week x2=number of shorts produced each week x3 number of pants produced each week and for i=1,2,3,define 为={&f交28 mand We can have the following IP model: max6x+4x2+7x3-200y1-150y2-100y3 s.t. 3xM+2X2+6x3≤150 (Labor constraint) 4x1+3x2+4x3 160 (Cloth constraint) xM≤Myh,x2≤M2y2,x3≤My3,(Fixed charge) 灯,2,x3≥0,灯,2,3 integer, y1,y2,3=0or1. 30Q0 Xi Chen (chenxi0109@bfsu.edu.cn) Integer Programming 6/42
Introduction Define x1 = number of shirts produced each week x2 = number of shorts produced each week x3 = number of pants produced each week and for i = 1, 2, 3, define yi = 1, if xi > 0 are manufactured, 0, if xi = 0. We can have the following IP model: max 6x1 + 4x2 + 7x3 − 200y1 − 150y2 − 100y3 s.t. 3x1 + 2x2 + 6x3 ≤ 150 (Labor constraint) 4x1 + 3x2 + 4x3 ≤ 160 (Cloth constraint) x1 ≤ M1y1, x2 ≤ M2y2, x3 ≤ M3y3, (Fixed charge) x1, x2, x3 ≥ 0, x1, x2, x3 integer, y1, y2, y3 = 0 or 1. Xi Chen (chenxi0109@bfsu.edu.cn) Integer Programming 6 / 42

The Branch-and-Bound Method Introduction 2The Branch-and-Bound Method Implicit Enumeration The Cutting Plane Algorithm 4口4+4三4至,至)只0 Xi Chen (chenxi0109@bfsu.edu.cn) Integer Programming 7/42
The Branch-and-Bound Method 1 Introduction 2 The Branch-and-Bound Method 3 Implicit Enumeration 4 The Cutting Plane Algorithm Xi Chen (chenxi0109@bfsu.edu.cn) Integer Programming 7 / 42

The Branch-and-Bound Method If you solve the LP relaxation of a pure IP and obtain a solution in which all variables are integers,then the optimal solution to the LP relaxation is also the optimal solution to the IP. Example 2 The Telfa Corporation manufactures tables and chairs.A table requires 1 hour of labor and 9 square board feet of wood,and a chair requires 1 hour of labor and 5 square board feet of wood.Currently,6 hours of labor and 45 square board feet of wood are available.Each table contributes $8 to profit,and each chair contributes $5 to profit. Formulate and solve an IP to maximize Telfa's profit. max 8为+5x2 s.t. x1+x2 <6 (Labor constraint) 9为+5x2≤45 (Vood constraint),x,x2≥0,x,x2 integer. Xi Chen (chenxi0109@bfsu.edu.cn) Integer Programming 8/42
The Branch-and-Bound Method If you solve the LP relaxation of a pure IP and obtain a solution in which all variables are integers, then the optimal solution to the LP relaxation is also the optimal solution to the IP. Example 2 The Telfa Corporation manufactures tables and chairs. A table requires 1 hour of labor and 9 square board feet of wood, and a chair requires 1 hour of labor and 5 square board feet of wood. Currently, 6 hours of labor and 45 square board feet of wood are available. Each table contributes $8 to profit, and each chair contributes $5 to profit. Formulate and solve an IP to maximize Telfa’s profit. max 8x1 + 5x2 s.t. x1 + x2 ≤ 6 (Labor constraint) 9x1 + 5x2 ≤ 45 (Wood constraint), x1, x2 ≥ 0, x1, x2 integer. Xi Chen (chenxi0109@bfsu.edu.cn) Integer Programming 8 / 42

The Branch-and-Bound Method ABC=feusible region for subproblens 2 ●=P Teasible point IP celaxution's feusible region DEFG-feasible pegion for subprohlem 3 .feasihle peint for original IP 1+5■45 Opiimal LP solution to subprobdem I 与=375 5■2.25 =165 1=1 124 x S3 £=41 1=2 Subproblem 3 = Xi Chen (chenxi0109@bfsu.edu.cn) Integer Programming 9/42
The Branch-and-Bound Method Xi Chen (chenxi0109@bfsu.edu.cn) Integer Programming 9 / 42

The Branch-and-Bound Method LAf teusihle region fur xubpredlom 5 No fesible regin fur xubprnhlem 4 Gra i 2 does ace imercet AAC) C-41 H- 4-(地.) t1 124 s女nhhm2 1=2 A fosinte fegiosh for sunprodom 5 三4 A=asinte rog'ke fur山bTn 与= N■Isps鲜im了 马22 1 Subprobicm 4 13 Xi Chen (chenxi0109@bfsu.edu.cn) Integer Programming 10/42
The Branch-and-Bound Method Xi Chen (chenxi0109@bfsu.edu.cn) Integer Programming 10 / 42
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 北京外国语大学:《运筹学 Operations Research》课程教学资源(课件讲稿)线性代数 Linear Programming(主讲:陈曦).pdf
- 《运筹学 Operations Research》课程教学资源(书籍教材)《运筹学:应用和算法》电子书(第四版)Operations Research, Applications and Algorithms - Wayne L. Winston,4th.pdf
- 华东理工大学:《概率论与数理统计》课程教学资源(PPT课件讲稿)第7章 统计假设检验和区间估计.ppt
- 华东理工大学:《概率论与数理统计》课程教学资源(PPT课件讲稿)第6章 数理统计学中的基本概念.ppt
- 华东理工大学:《概率论与数理统计》课程教学资源(PPT课件讲稿)第5章 极限定理初步.ppt
- 华东理工大学:《概率论与数理统计》课程教学资源(PPT课件讲稿)第4章 随机变量的数学特征.ppt
- 华东理工大学:《概率论与数理统计》课程教学资源(PPT课件讲稿)第3章 多维随机变量.ppt
- 华东理工大学:《概率论与数理统计》课程教学资源(PPT课件讲稿)第2章 一维随机变量.ppt
- 华东理工大学:《概率论与数理统计》课程教学资源(PPT课件讲稿)第1章 应用概率统计(事件与概率).ppt
- 华东理工大学:《概率论与数理统计》课程教学资源(各章习题,共七章,含解答)probability theory & mathematical statistics.docx
- 《概率论与数理统计 probability theory & mathematical statistics》课程教学资源(参考文献)水塔水流量问题的广义线性回归解法.pdf
- 《概率论与数理统计 probability theory & mathematical statistics》课程教学资源(参考文献)在概率统计教学中培养学生的建模思想和能力.pdf
- 《概率论与数理统计 probability theory & mathematical statistics》课程教学资源(参考文献)概率论教学中“独立性”概念的一点注释.pdf
- 华东理工大学:《概率论与数理统计》课程教学资源(学习指导书)第7章 假设检验和区间估计.doc
- 华东理工大学:《概率论与数理统计》课程教学资源(学习指导书)第6章 事件数理统计的基本概念与概率.doc
- 华东理工大学:《概率论与数理统计》课程教学资源(学习指导书)第5章 极限定理初步.doc
- 华东理工大学:《概率论与数理统计》课程教学资源(学习指导书)第4章 随机变量的数学特征.doc
- 华东理工大学:《概率论与数理统计》课程教学资源(学习指导书)第3章 多维随机变量.doc
- 华东理工大学:《概率论与数理统计》课程教学资源(学习指导书)第2章 一维随机变量.doc
- 华东理工大学:《概率论与数理统计》课程教学资源(学习指导书)第1章 事件与概率.doc
- 北京外国语大学:《Matlab》课程教学资源(课件讲稿)MATLAB在经济与管理研究中的应用理论与实例 An Introduction with Applications in Economics and Management.pdf
- 运城学院:《微分几何 Differential Geometry》课程教学资源(教学大纲).pdf
- 山西师范大学:数学与应用数学专业课程教学大纲(合集).pdf
- 山西师范大学:信息与计算科学专业课程教学大纲(合集).pdf
- 华东理工学院:《线性代数》课程教学资源(教学大纲,适用专业:药物制剂,主讲:刘剑平).pdf
- 华东理工学院:《线性代数》课程教学资源(学习指导书)前言、第一章 矩阵.pdf
- 华东理工学院:《线性代数》课程教学资源(学习指导书)第二章 行列式.pdf
- 华东理工学院:《线性代数》课程教学资源(学习指导书)第三章 矩阵的秩和线性代数方程组.pdf
- 华东理工学院:《线性代数》课程教学资源(学习指导书)第四章 向量空间.pdf
- 华东理工学院:《线性代数》课程教学资源(学习指导书)第五章 特征问题与二次型.pdf
- 华东理工学院:《线性代数》课程教学资源(PPT课件讲稿)第一章 矩阵.ppt
- 华东理工学院:《线性代数》课程教学资源(PPT课件讲稿)第二章 行列式.ppt
- 华东理工学院:《线性代数》课程教学资源(PPT课件讲稿)第三章 矩阵的秩和线性代数方程组.ppt
- 华东理工学院:《线性代数》课程教学资源(PPT课件讲稿)第四章 向量空间.ppt
- 华东理工学院:《线性代数》课程教学资源(PPT课件讲稿)第五章 特征值问题与二次型.ppt
- 四川省普通高等学校“专升本”选拔《高等数学》考试大纲(理工类).pdf
- 安徽医科大学:《医药高等数学》课程教学大纲 Medical Advanced Mathematics(45学时).doc
- 《医药高等数学 Medical Advanced Mathematics》课程教学资源(实践指导)积分与应用的单元自测(单选题).pptx
- 《医药高等数学 Medical Advanced Mathematics》课程教学资源(实践指导)导数与微分的单元自测(单选题).pptx
- 《医药高等数学 Medical Advanced Mathematics》课程教学资源(实践指导)极限与连续单元自测(单选题).pptx