麻省理工大学:《Foundations of Biology》课程教学资源(英文版)Lecture 3 For a molecular simulation or model

7.91 Amy Keating How do we use computational methods to analyze, predict, or design protein sequences and structures? Theme Methods based on physics vs, methods based on our accumulated empirical knowledge of protein properties
How do we use computational methods to analyze, predict, or design protein sequences and structures? Theme: Methods based on physics vs. methods based on our accumulated empirical knowledge of protein properties 7.91 Amy Keating

For a molecular simulation or model you need 1. a representation of the protein 2. An energy function 3. a search algorithm or optimizer
For a molecular simulation or model you need: 1. A representation of the protein 2. An energy function 3. A search algorithm or optimizer

Covalent Potential Energy Terms Covalent U,+U1 bond angle +u tU orion bond ∑ k,(b-b)2 bonds bond angle ∑k(0-20 bond angles z mproper dihedral ∑k improper dihedrals 2(- torsion ∑k1+ cos(no-6) torsions Brooks et al, J. Comput. Chem. 4: 187-217 (1983)
Covalent Potential Energy Terms UCovalent = U bond + U angle bond + Uimproper dihedral + U torsion 2 U bond = ∑ 1 kb (b − b 0 ) bonds 2 2 U angle bond = ∑ 1 kθ (θ − θ ) bond angles 2 0 Uimproper dihedral = ∑ 1 improper dihedrals 2 k Φ ( Φ − Φ 0 ) U torsion = ∑ 1 kφ[1 + cos( n φ − δ )] torsions 2 Brooks et al., J. Comput. Chem. 4: 187-217 (1983) 2

Non-Covalent Potential Energy Terms Lennard-Jones potential Non-covalent U vdw +U elec B vdw accurate approximate q91 Coulombs law i>J y
Non-Covalent Potential Energy Terms UNon -covalent = UvdW +U elec Lennard-Jones potential 12 ij ij r B 6 ij ij r C − ⎛ Bij U vdW = ∑⎜ 12 − Cij ⎞⎟ i; j ⎝ rij rij 6 ⎠ “accurate” approximate qi q j U elec = ∑ Coulomb’s law i ; j εrij

The potential energy surface is a 3N-6 dimensional space For a protein, we assume a single native-structure minimum There are many local minima, and some may be close in energy to the global minimum
The potential energy surface is a 3N-6 dimensional space. For a protein, we assume a single native-structure minimum. There are many local minima, and some may be close in energy to the global minimum. Energy X

Sampling the Potential Energy Surface Energy minimization downhill search, generally to nearest local minimum can be used to relax structures might be useful to define local changes due to mutation Normal mode analysis defines "characteristic motions which are distortions about a local minimum structure orders motions "easy(low frequency to hard"(high) Molecular dynamics movie of motion at given temperature (300 k) equivalent to statistical mechanical ensemble Monte Carlo/ simulated Annealing Describe properties of the landscape and thermodyanmic parameters without simulating how the molecular actually moves
Sampling the Potential Energy Surface • Energy minimization – “downhill” search, generally to nearest local minimum – can be used to relax structures – might be useful to define local changes due to mutation • Normal mode analysis – defines “characteristic motions”, which are distortions about a local minimum structure – orders motions “easy” (low frequency) to “hard” (high) • Molecular dynamics – movie of motion at given temperature (300 K) – equivalent to statistical mechanical ensemble • Monte Carlo/Simulated Annealing – Describe properties of the landscape and thermodyanmic parameters without simulating how the molecular actually moves

Energy minimization Potential Energy, U(R Conformational Space, R X-ray structure Iterative procedures terminate when reach F=-VU(r) tolerance, such as small gradient M +I=r+sF Poor initial structure leads to poor local minimum Multiple minimum problem ONLY FINDS LOCAL MINIMA!
Energy Minimization Conformational Space, R Potential Energy, U(R) X-ray structure X • Iterative procedures; terminate when reach tolerance, such as small F ( i = −∇ r U )i gradient • Poor initial structure leads ri+1 = ri + δ Fi to poor local minimum • Multiple minimum problem ONLY FINDS LOCAL MINIMA!

Uses of simple minimization 1. The"minimum perturbation approach"to modeling a mutation Assume structure of single-site mutant is close to known Wild-type structure Find stable conformations for mutant side chain in context of wild-type protein Use energy minimization to relax candidate structures (all degrees of freedom) Shih, brady and Karplus, Proc. Nat. Acad. Sci. USA82: 1697-1700 (1985); hemagglutinin Gly to Asp mutation modeled accurately 2. Relieving strain before analyZing the energy of an experimental or predicted structure 3. Structure building and refinement when solving structures using X-ray crystallography or NMR
Uses of simple minimization 1. The “minimum perturbation approach” to modeling a mutation – Assume structure of single-site mutant is close to known wild-type structure • Find stable conformations for mutant side chain in context of wild-type protein • Use energy minimization to relax candidate structures (all degrees of freedom) Shih, Brady, and Karplus, Proc. Natl. Acad. Sci. USA 82: 1697–1700 (1985); hemagglutinin Gly to Asp mutation modeled accurately 2. Relieving strain before analyzing the energy of an experimental or predicted structure 3. Structure building and refinement when solving structures using X-ray crystallography or NMR

Normal Mode analysis Characteristic Motions and their relative ease Thermodynamic Properties Mathematical Approximation: Series of Independent Harmonic oscillators U ()=U(R)+VVRR-R)+,∑∑ r-r0r7-r0) ar ar Corresponds to local Expansion of potential Surface as parabolic U(R) c harmonic approximation R
Normal Mode Analysis • Characteristic Motions and their Relative Ease • Thermodynamic Properties Mathematical Approximation: Series of Independent Harmonic Oscillators 0 ∂ 2 U ( ( R U ) = R U 0 ) + ∇ ( R U 0 )( − R R 0 ) + − 1 2 ∑∑ ∂ ∂ ( r r i 0 , )( rj − rj 0 , ) +" i j >i i r ri j Corresponds to Local Expansion of Potential Surface as Parabolic U(R ) actual harmonic approximation R

Normal Modes locate"easy"Deformations U(R R Low-frequency, energetically easy motions will dominate the dynamical behavior of macromolecules
Normal Modes Locate “Easy” Deformations U(R) R • Low-frequency, energetically easy motions will dominate the dynamical behavior of macromolecules
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 麻省理工大学:《Foundations of Biology》课程教学资源(英文版)Lecture 1 How are X-ray crystal structures.pdf
- 麻省理工大学:《Foundations of Biology》课程教学资源(英文版)Lecture 1 Review of protein structure hierarchy.pdf
- 麻省理工大学:《Foundations of Biology》课程教学资源(英文版)Lecture 5 Review -Homology Modeling.pdf
- 麻省理工大学:《Foundations of Biology》课程教学资源(英文版)Lecture 5 Markov models.pdf
- 麻省理工大学:《Foundations of Biology》课程教学资源(英文版)Lecture 6 Structure Prediction.pdf
- 麻省理工大学:《Foundations of Biology》课程教学资源(英文版)Lecture 4 Organization of topics.pdf
- 麻省理工大学:《Foundations of Biology》课程教学资源(英文版)Lecture 6 Predicting rna Secondary structure.pdf
- 麻省理工大学:《Foundations of Biology》课程教学资源(英文版)Lecture 3 Review of DNA Seq.pdf
- 麻省理工大学:《Foundations of Biology》课程教学资源(英文版)Lecture 1 Genome Sequencing.pdf
- 麻省理工大学:《Foundations of Biology》课程教学资源(英文版)Lecture 2 The Language of genomics.pdf
- 麻省理工大学:《Foundations of Biology》课程教学资源(英文版)Lecture 5 Molecular Phylogenetics.pdf
- 麻省理工大学:《Foundations of Biology》课程教学资源(英文版)Lecture 4 Database Searching.pdf
- 麻省理工大学:《Foundations of Biology》课程教学资源(英文版)Lecture 2 More Pairwise Sequence Comparisons.pdf
- 麻省理工大学:《Foundations of Biology》课程教学资源(英文版)Lecture 3 More Multiple Sequence Alignment.pdf
- 麻省理工大学:《Foundations of Biology》课程教学资源(英文版)Lecture 1 Michael Yaffe Introduction to Bioinformatics.pdf
- 《微生物遗传学》第四章 基因工程技术在改进微生物.ppt
- 《分子生物学》课程教学资源(练习题)试题详解(含参考答案).doc
- 南京军区南京总医院:《组织芯片应用的现状与前景》讲义.pdf
- 《酶学》课程教学资源(讲义)第四章 酶的结构和功能.doc
- 《酶学》课程教学资源(讲义)第十一章 酶在医学方面的应用.doc
- 麻省理工大学:《Foundations of Biology》课程教学资源(英文版)Lecture 2 Comparing protein Structures.pdf
- 麻省理工大学:《Foundations of Biology》课程教学资源(英文版)Lecture 7 The protein interactome.pdf
- 麻省理工大学:《Foundations of Biology》课程教学资源(英文版)Lecture 7 DNA Microarrays Clustering.pdf
- 麻省理工大学:《Foundations of Biology》课程教学资源(英文版)Lecture 6 Ab initio structure prediction.pdf
- 《植物与植物生理学》课程PPT教学课件(高职高专)第三章 植物的矿质营养.ppt
- 《植物与植物生理学》课程PPT教学课件(高职高专)第二章 植物的水分代谢.ppt
- 《植物与植物生理学》课程PPT教学课件(高职高专)第五章 植物的呼吸作用.ppt
- 《植物与植物生理学》课程PPT教学课件(高职高专)第四章 植物的光合作用.ppt
- 《植物与植物生理学》课程PPT教学课件(高职高专)第一章 植物细胞和组织.ppt
- 四川农业大学:《生命科学概论》课程教学资源(PPT课件讲稿)植物鉴赏与人文精神.ppt
- 四川农业大学:《生命科学概论》课程教学资源(PPT课件讲稿)展望21世纪的生命科学.ppt
- 四川农业大学:《生命科学概论》课程教学资源(PPT课件讲稿)人兽共患病.ppt
- 南京农业大学:《动物生物化学 Animal Biochemistry》精品课程教学资源(PPT课件讲稿)第1章 绪论(主讲:邹思湘).ppt
- 南京农业大学:《动物生物化学 Animal Biochemistry》精品课程教学资源(PPT课件讲稿)第2章 生命的化学特征.ppt
- 南京农业大学:《动物生物化学 Animal Biochemistry》精品课程教学资源(PPT课件讲稿)第3章 蛋白质.ppt
- 南京农业大学:《动物生物化学 Animal Biochemistry》精品课程教学资源(PPT课件讲稿)第4章 核酸.ppt
- 南京农业大学:《动物生物化学 Animal Biochemistry》精品课程教学资源(PPT课件讲稿)第5章 糖类.ppt
- 南京农业大学:《动物生物化学 Animal Biochemistry》精品课程教学资源(PPT课件讲稿)第6章 生物膜与物质运输.ppt
- 南京农业大学:《动物生物化学 Animal Biochemistry》精品课程教学资源(PPT课件讲稿)第7章 生物催化剂一酶.ppt
- 南京农业大学:《动物生物化学 Animal Biochemistry》精品课程教学资源(PPT课件讲稿)第8章 糖代谢.ppt