麻省理工大学:《Foundations of Biology》课程教学资源(英文版)Lecture 5 Markov models

791/7.36/BE490 Lecture 5 Mar.9.2004 Markov models 8 DNA Sequence Evolution Chris burge
7.91 / 7.36 / BE.490 Lecture #5 Mar. 9, 2004 Markov Models & DNA Sequence Evolution Chris Burge

Review of markov HMM Models for dna Markov Models for splice sites Hidden Markov models looking under the hood The Viterbi algorithm Real World HMMs Ch. 4 of Mount
Review of Markov & HMM Models for DNA • Hidden Markov Models - looking under the hood Ch. 4 of Mount • Markov Models for splice sites • The Viterbi Algorithm • Real World HMMs

CpG islands %C+G 60 40
CpG Islands %C+G 60 50 40 30

Cpg Island Hidden Markov Model P:=0.001 g P=0.99999 P:=0999 Genome Hidden Pn:=0.00001 Island ↓↓↓↓↓↓↓↓ A C T C GA G T A C G A T Observable CpG Island: 0.3 0.3 0.2 0.2 Genome:02020.30.3
Hidden CpG Island Hidden Markov Model P Pig = 0.001 P = 0.99999 gg ii = 0.999 Genome Pgi = 0.00001 Island … A C T C G A G T A CpG Island: C 0.3 G 0.3 A 0.2 T 0.2 Genome: 0.2 0.2 0.3 0.3 Observable

CpG Island hmm i P=0.99999 Pin =0.001 Island 99 g “ Transition Genome P:=0999 probabilities" Pn:=0.00001 ACT…℃ GA G T A C G A T “ Emission Probabilities” CpG Island:"0.3030.20.2 Genome:0.20.2030.3
CpG Island HMM II P = 0.99999 Pig = 0.001 Island gg “Transition Genome Pii = 0.999 probabilities” Pgi = 0.00001 … A C C G A G T A T CpG Island: C G A T 0.3 0.3 0.2 0.2 Genome: 0.2 0.2 0.3 0.3 “Emission Probabilities

CpG Island hMm Ill Want to infer ↓↓↓↓↓↓ A GA G A Observe But HMM is written in the other direction (observable depends on hidden)
CpG Island HMM III … Want to infer A C T C G A G T A Observe But HMM is written in the other direction (observable depends on hidden)

Inferring the Hidden from the observable (Bayes' rule) P(H=h1, h2,,hn,0=01, 02,,On) Conditional prob P(AB)=P(A, B)/P(B P(H=h1,.,hn, O=O1 PO=01,,On) P(H=h,…hn)(O=0n,…On|H=hhn) P(O=01,On) P(O=O1,. ,On) somewhat difficult to calculate But notice P(H=hn,…,hn2O )>P(H=h1,…,hn,O mpliesP(H=h,…,hn|O=0,,O)>P(H=h1,hn|0=01,,On) so can treat P(0=O1, ,0n)as a constant
Inferring the Hidden from the Observable (Bayes’ Rule) P ( H = h 1, h 2 ,..., hn | O = o 1, o 2 ,..., on ) Conditional Prob: P(A|B) = P(A,B)/P(B) P ( H = h 1,..., hn , O = o 1, ..., on ) = P (O = o 1, ..., on ) P ( H = h 1,..., hn )P (O = o 1 ,..., on | H = h 1,..., hn ) = P (O = o 1, ..., on ) P (O = o 1 ,..., on ) somewhat difficult to calculate But notice: P ( H = h 1, ..., hn , O = o 1,..., on ) > P ( H = h ′1, ..., h ′n , O = o 1, ..., on ) implies P (H = h 1, ..., hn | O = o 1,..., on ) > P (H = h ′1 ,..., h ′n | O = o 1, ..., on ) so can treat P (O = o 1 ,..., on ) as a constant

Finding the Optimal"Parse 99 (Viterbi algorithm Want to find sequence of hidden states hopt =hip, hip, hyp which maximizes joint probability: P(H=h,,,hn,0=01,On) (optimal "parse" of sequence Solution Define rch= probability of optimal parse of the subsequence 1. i ending in state h Solve recursively, i. e. determine R2 in terms of r,etc A. Viterbi, an MiT bS/MEng student in E.E. -founder of Qualcomm
Finding the Optimal “Parse” (Viterbi Algorithm) H opt opt opt , h 2 which maximizes joint probability: P( H = h1, ..., h n, O = o1,..., o n) Want to find sequence of hidden states = h1 opt , h 3 , ... (optimal “parse” of sequence) Solution: ( h )= probability of optimal parse of the Define Ri subsequence 1..i ending in state h ( h ) Solve recursively, i.e. determine R ( 2 h) in terms of R 1 , etc. A. Viterbi, an MIT BS/MEng student in E.E. - founder of Qualcomm

Trellis" Diagram for Viterbi algorithm Position in Sequence→ +2 +3j+4 个0050 ○O A T G C A Run time for k-state hmm on sequence of length l?
“Trellis” Diagram for Viterbi Algorithm Position in Sequence → 1 … i i+1 i+2 i+3 i+4 … L T … A T C G C … A Run time for k-state HMM on sequence of length L? Hidden Sta et s →

Viterbi algorithm examples What is the optimal parse of the sequence (ACG11000 1000℃8011000407100006011000 Powers of 1.5 N=204060 80 (1.5)=3×1031×1073×10101×1014
Viterbi Algorithm Examples What is the optimal parse of the sequence: • (ACGT)10000 • A1000 C80 T1000 C40 A1000 G60 T1000 Powers of 1.5: N = 20 40 60 80 (1.5)N = 3x103 1x107 3x1010 1x1014
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 麻省理工大学:《Foundations of Biology》课程教学资源(英文版)Lecture 6 Structure Prediction.pdf
- 麻省理工大学:《Foundations of Biology》课程教学资源(英文版)Lecture 4 Organization of topics.pdf
- 麻省理工大学:《Foundations of Biology》课程教学资源(英文版)Lecture 6 Predicting rna Secondary structure.pdf
- 麻省理工大学:《Foundations of Biology》课程教学资源(英文版)Lecture 3 Review of DNA Seq.pdf
- 麻省理工大学:《Foundations of Biology》课程教学资源(英文版)Lecture 1 Genome Sequencing.pdf
- 麻省理工大学:《Foundations of Biology》课程教学资源(英文版)Lecture 2 The Language of genomics.pdf
- 麻省理工大学:《Foundations of Biology》课程教学资源(英文版)Lecture 5 Molecular Phylogenetics.pdf
- 麻省理工大学:《Foundations of Biology》课程教学资源(英文版)Lecture 4 Database Searching.pdf
- 麻省理工大学:《Foundations of Biology》课程教学资源(英文版)Lecture 2 More Pairwise Sequence Comparisons.pdf
- 麻省理工大学:《Foundations of Biology》课程教学资源(英文版)Lecture 3 More Multiple Sequence Alignment.pdf
- 麻省理工大学:《Foundations of Biology》课程教学资源(英文版)Lecture 1 Michael Yaffe Introduction to Bioinformatics.pdf
- 《微生物遗传学》第四章 基因工程技术在改进微生物.ppt
- 《分子生物学》课程教学资源(练习题)试题详解(含参考答案).doc
- 南京军区南京总医院:《组织芯片应用的现状与前景》讲义.pdf
- 《酶学》课程教学资源(讲义)第四章 酶的结构和功能.doc
- 《酶学》课程教学资源(讲义)第十一章 酶在医学方面的应用.doc
- 《酶学》课程教学资源(讲义)第六章 多种因素对酶反应速度的影响.doc
- 《酶学》课程教学资源(讲义)第八章 酶的别构效应.doc
- 《酶学》课程教学资源(讲义)第五章 酶催化动力学基础.doc
- 《酶学》课程教学资源(讲义)第二章 酶的一般性质和分类.doc
- 麻省理工大学:《Foundations of Biology》课程教学资源(英文版)Lecture 5 Review -Homology Modeling.pdf
- 麻省理工大学:《Foundations of Biology》课程教学资源(英文版)Lecture 1 Review of protein structure hierarchy.pdf
- 麻省理工大学:《Foundations of Biology》课程教学资源(英文版)Lecture 1 How are X-ray crystal structures.pdf
- 麻省理工大学:《Foundations of Biology》课程教学资源(英文版)Lecture 3 For a molecular simulation or model.pdf
- 麻省理工大学:《Foundations of Biology》课程教学资源(英文版)Lecture 2 Comparing protein Structures.pdf
- 麻省理工大学:《Foundations of Biology》课程教学资源(英文版)Lecture 7 The protein interactome.pdf
- 麻省理工大学:《Foundations of Biology》课程教学资源(英文版)Lecture 7 DNA Microarrays Clustering.pdf
- 麻省理工大学:《Foundations of Biology》课程教学资源(英文版)Lecture 6 Ab initio structure prediction.pdf
- 《植物与植物生理学》课程PPT教学课件(高职高专)第三章 植物的矿质营养.ppt
- 《植物与植物生理学》课程PPT教学课件(高职高专)第二章 植物的水分代谢.ppt
- 《植物与植物生理学》课程PPT教学课件(高职高专)第五章 植物的呼吸作用.ppt
- 《植物与植物生理学》课程PPT教学课件(高职高专)第四章 植物的光合作用.ppt
- 《植物与植物生理学》课程PPT教学课件(高职高专)第一章 植物细胞和组织.ppt
- 四川农业大学:《生命科学概论》课程教学资源(PPT课件讲稿)植物鉴赏与人文精神.ppt
- 四川农业大学:《生命科学概论》课程教学资源(PPT课件讲稿)展望21世纪的生命科学.ppt
- 四川农业大学:《生命科学概论》课程教学资源(PPT课件讲稿)人兽共患病.ppt
- 南京农业大学:《动物生物化学 Animal Biochemistry》精品课程教学资源(PPT课件讲稿)第1章 绪论(主讲:邹思湘).ppt
- 南京农业大学:《动物生物化学 Animal Biochemistry》精品课程教学资源(PPT课件讲稿)第2章 生命的化学特征.ppt
- 南京农业大学:《动物生物化学 Animal Biochemistry》精品课程教学资源(PPT课件讲稿)第3章 蛋白质.ppt
- 南京农业大学:《动物生物化学 Animal Biochemistry》精品课程教学资源(PPT课件讲稿)第4章 核酸.ppt