麻省理工大学:《Foundations of Biology》课程教学资源(英文版)Lecture 6 Predicting rna Secondary structure

791/7.36/BE490 Lecture #6 Mar.11,2004 Predicting rna Secondary structure Chris burge
7.91 / 7.36 / BE.490 Lecture #6 Mar. 11, 2004 Predicting RNA Secondary Structure Chris Burge

Review of markov models DNA Evolution CpG Island HMM The viterbi algorithm Real World HMMs Markov models for dna evolution Ch. 4 of Mount
Review of Markov Models & DNA Evolution Ch. 4 of Mount • CpG Island HMM • The Viterbi Algorithm • Real World HMMs • Markov Models for DNA Evolution

DNA Sequence evolution Generation n-1(grandparent) 5/TGGCATGCACCCTGTAAGTCAATATAAATGGCTAdGCCTAGCCCATGCGA 3 3 ACCGTACGTGGGACATTCAGTTATATTTACCGATGCGGATCGGGTACGCT 5 Generation n(parent) 5 TGGCATGCACCCTGTAAGTCAATATAAATGGCTATGCCTAGCCOATGCGA 3 3/ ACCGTACGTGGGACATTCAGTTATATTTACCGATACGGATCGGGTACGCT 5/ Generation n+1(child) 5 TGGCATGCACCCTGTAAGTCAATATAAATGGCTATGCCTAGCCCGTGCGA 3 3 ACCGTACGTGGGACATTCAGTTATATTTACCGATACGGATCGGGCACGCT 5/
DNA Sequence Evolution Generation n-1 (grandparent) 5’ TGGCATGCACCCTGTAAGTCAATATAAATGGCTACGCCTAGCCCATGCGA 3’ |||||||||||||||||||||||||||||||||||||||||||||||||| 3’ ACCGTACGTGGGACATTCAGTTATATTTACCGATGCGGATCGGGTACGCT 5’ 5’ TGGCATGCACCCTGTAAGTCAATATAAATGGCTA TGCCTAGCCCATGCGA 3’ |||||||||||||||||||||||||||||||||||||||||||||||||| 3’ ACCGTACGTGGGACATTCAGTTATATTTACCGAT ACGGATCGGGTACGCT 5’ Generation n (parent) Generation n+1 (child) 5’ TGGCATGCACCCTGTAAGTCAATATAAATGGCTA TGCCTAGCCC GTGCGA 3’ |||||||||||||||||||||||||||||||||||||||||||||||||| 3’ ACCGTACGTGGGACATTCAGTTATATTTACCGAT ACGGATCGGG CACGCT 5’

What is a Markov model (aka Markov Chain)? Classical Definition a discrete stochastic process X1, X2, X3, which has the Markov property PMXn1JX=X, X2=X2,.X,x,)=PXn+ X=X) (for all xi, all j, all n In words A random process which has the property that the future (next state) is conditionally independent of the past given the present(current state) Markov-a russian mathematician ca. 1922
What is a Markov Model (aka Markov Chain)? Classical Definition A discrete stochastic process X1, X2, X3, … which has the Markov property: P(Xn+1 = j | X1=x1, X2=x2, … Xn=xn) = P(Xn+1 = j | Xn=x ) n (for all x , all j, all n) i In words: A random process which has the property that the future (next state) is conditionally independent of the past given the present (current state) Markov - a Russian mathematician, ca. 1922

DNA Sequence evolution is a markov process No selection case PAA PAC Pag P Sn base at generation n P CA CT PGA PGC PGG Pgt P=P(Sm+1=j1S2=) Pta PIc PIg p d=(9a,c, 9, aT)=vector of prob's of bases at gen. n ntk Handy relations gp q
DNA Sequence Evolution is a Markov Process No selection case ⎛ PAA PAC PAG PAT ⎞ PCC PCG PCT ⎟ Sn = base at generation n P = ⎜ ⎜ PCA ⎟ ⎜ PGA PGC PGG PGT ⎟ ⎟ Pij = P (S = j |Sn = i ) ⎝⎜ PTA PTC PTG PTT ⎠ n +1 G q n = ( q A , qC ,q , q T G ) = vector of prob’s of bases at gen. n Handy relations: G q n + 1 G q P n = G q n +k = G q n Pk

Limit Theorem for markov chains n=base at generationn Pi=P(Sn+1=jiN=i) Pij >0 for all i,j(and ∑P=1fora0 then there is a unique vector r such that r=rp and ling pn=r for any prob. vector q n→>00 r is called the"stationary"or"limiting" distribution of P See Ch 4, Taylor Karlin, An Introduction to Stochastic Modeling, 1984 for details
Limit Theorem for Markov Chains Sn = base at generation n Pij = P ( Sn +1 = j |Sn =i ) If Pij >0 for all i,j (and ∑ Pij =1 for all i) j G then there is a unique vector P n G r P G r r such that G q G r G = and lim = (for any prob. vector q ) n → ∞ G r is called the “stationary” or “limiting” distribution of P See Ch. 4, Taylor & Karlin, An Introduction to Stochastic Modeling, 1984 for details

Stationary Distribution Examples 2-letter alphabet: R=purine, Y=pyrimidine Stationary distributions for: pp 0<p<1 0<p<1,0<q q
Stationary Distribution Examples 2-letter alphabet: R = purine, Y = pyrimidine Stationary distributions for: ⎛ 1 0⎞ ⎛ 0 1 ⎞ I = ⎜ ⎟ Q = ⎜ ⎟ ⎝ 0 1⎠ ⎝ 1 0⎠ ⎛1 − p p ⎞ P = ⎝⎜ p 1 − p⎠⎟ 0 < p < 1 ⎛1 − p p ⎞ P′ = 0 < p < 1, 0 < q < 1 ⎝⎜ q 1 − q⎠⎟

How are mutation rates measured?
How are mutation rates measured?

How does entropy change when a Markov transition matrix is applied? If limiting distribution is uniform, then entropy increases (analogous to 2nd Law of Thermodynamics However, this is not true in general (why not
How does entropy change when a Markov transition matrix is applied? If limiting distribution is uniform, then entropy increases (analogous to 2nd Law of Thermodynamics) However, this is not true in general (why not?)

How rapidly is the stationary distribution approached?
How rapidly is the stationary distribution approached?
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 麻省理工大学:《Foundations of Biology》课程教学资源(英文版)Lecture 3 Review of DNA Seq.pdf
- 麻省理工大学:《Foundations of Biology》课程教学资源(英文版)Lecture 1 Genome Sequencing.pdf
- 麻省理工大学:《Foundations of Biology》课程教学资源(英文版)Lecture 2 The Language of genomics.pdf
- 麻省理工大学:《Foundations of Biology》课程教学资源(英文版)Lecture 5 Molecular Phylogenetics.pdf
- 麻省理工大学:《Foundations of Biology》课程教学资源(英文版)Lecture 4 Database Searching.pdf
- 麻省理工大学:《Foundations of Biology》课程教学资源(英文版)Lecture 2 More Pairwise Sequence Comparisons.pdf
- 麻省理工大学:《Foundations of Biology》课程教学资源(英文版)Lecture 3 More Multiple Sequence Alignment.pdf
- 麻省理工大学:《Foundations of Biology》课程教学资源(英文版)Lecture 1 Michael Yaffe Introduction to Bioinformatics.pdf
- 《微生物遗传学》第四章 基因工程技术在改进微生物.ppt
- 《分子生物学》课程教学资源(练习题)试题详解(含参考答案).doc
- 南京军区南京总医院:《组织芯片应用的现状与前景》讲义.pdf
- 《酶学》课程教学资源(讲义)第四章 酶的结构和功能.doc
- 《酶学》课程教学资源(讲义)第十一章 酶在医学方面的应用.doc
- 《酶学》课程教学资源(讲义)第六章 多种因素对酶反应速度的影响.doc
- 《酶学》课程教学资源(讲义)第八章 酶的别构效应.doc
- 《酶学》课程教学资源(讲义)第五章 酶催化动力学基础.doc
- 《酶学》课程教学资源(讲义)第二章 酶的一般性质和分类.doc
- 《酶学》课程教学资源(讲义)第九章 固定化生物催化剂.doc
- 《酶学》课程教学资源(讲义)第三章 酶活性的测定及分离纯化.doc
- 《酶学》课程教学资源(讲义)第七章 多底物酶反应动力学.doc
- 麻省理工大学:《Foundations of Biology》课程教学资源(英文版)Lecture 4 Organization of topics.pdf
- 麻省理工大学:《Foundations of Biology》课程教学资源(英文版)Lecture 6 Structure Prediction.pdf
- 麻省理工大学:《Foundations of Biology》课程教学资源(英文版)Lecture 5 Markov models.pdf
- 麻省理工大学:《Foundations of Biology》课程教学资源(英文版)Lecture 5 Review -Homology Modeling.pdf
- 麻省理工大学:《Foundations of Biology》课程教学资源(英文版)Lecture 1 Review of protein structure hierarchy.pdf
- 麻省理工大学:《Foundations of Biology》课程教学资源(英文版)Lecture 1 How are X-ray crystal structures.pdf
- 麻省理工大学:《Foundations of Biology》课程教学资源(英文版)Lecture 3 For a molecular simulation or model.pdf
- 麻省理工大学:《Foundations of Biology》课程教学资源(英文版)Lecture 2 Comparing protein Structures.pdf
- 麻省理工大学:《Foundations of Biology》课程教学资源(英文版)Lecture 7 The protein interactome.pdf
- 麻省理工大学:《Foundations of Biology》课程教学资源(英文版)Lecture 7 DNA Microarrays Clustering.pdf
- 麻省理工大学:《Foundations of Biology》课程教学资源(英文版)Lecture 6 Ab initio structure prediction.pdf
- 《植物与植物生理学》课程PPT教学课件(高职高专)第三章 植物的矿质营养.ppt
- 《植物与植物生理学》课程PPT教学课件(高职高专)第二章 植物的水分代谢.ppt
- 《植物与植物生理学》课程PPT教学课件(高职高专)第五章 植物的呼吸作用.ppt
- 《植物与植物生理学》课程PPT教学课件(高职高专)第四章 植物的光合作用.ppt
- 《植物与植物生理学》课程PPT教学课件(高职高专)第一章 植物细胞和组织.ppt
- 四川农业大学:《生命科学概论》课程教学资源(PPT课件讲稿)植物鉴赏与人文精神.ppt
- 四川农业大学:《生命科学概论》课程教学资源(PPT课件讲稿)展望21世纪的生命科学.ppt
- 四川农业大学:《生命科学概论》课程教学资源(PPT课件讲稿)人兽共患病.ppt
- 南京农业大学:《动物生物化学 Animal Biochemistry》精品课程教学资源(PPT课件讲稿)第1章 绪论(主讲:邹思湘).ppt