2013年第14届欧洲湍流会议:Some Studies on Spatial Dynamics of Incompressible Two Dimensional Wakes of Cylinders with Deformable Boundaries

Some Studies on Spatial Dynamics of Incompressible Two Dimensional Wakes of Cylinders with Deformable Boundaries XiLin XIE. Yu Chen Department of Mechanics Engineering Science, Fudan University, Shanghai, CHINA Coordinates and Governing Equation Local/ Boundary Dynamics x( t)sr(*/)+s(* /)+r(mx, j-s(x, n)-n(,r) 人入A domain of b vorticity stream-function with respect to the curvilinear coordinates including time explicitly (x)=(9 distribution b Pressure Equation for Incompressible flows with respect to the curvilinear coordinates including time explicitly Verification of Algorithm As an verification of the whole algorithm, we reproduced the suppression of vortex stress of a circular der by introduce certain traveling wave on the cylinder's boundary as reported firstly by CJ Wu et al [21 Furthermore, we discovered that the same phenomenon can also occur on an elliptic cylinder as shown in of max I Figure: Snaps of flow patterns of an elliptic cylinder with traveling wave boundary. The ecs espectively in the case of Re=500. Global Dynamics a(t)=an sin(2rft), b(t)=bo sin(2rft-3) r(t)=ro+a sin(2ft)cos(6e) Contrastive Studies on Spatial Dynamics Distribution Global Dynamics Cylinder Type Flow Patterns Mean value Amplitude Spectrum Spe ROCC Distribution ,,, POEC Tearing, shedding.31 652P/Pf±qfo wOCCTearing, shedding Pf1±qf Local/ Boundary Dynamics Shear Stress Cylinder Type Vorticity Flux Major Angle of Strain Spectrum Analysis Time domain local varying ROCC pfi±qfo POEC P WOCC Pf1±qo deformation Distribution principle-axis-oscillation elliptic cylinder; wocC to stationary-wave-oscillation circular cylinder. fo &f. denote shedding frequency and boundary oscillation frequency respectively, p denotes nature number. onclusion A novel kind of vorticity stream-function algorithm for planar incompressible flows with deformable boundaries is put forward based the finite deformation theory with respect to the curvilinear coordinates stribution orresponding to the current physical configurations including time explicitly. As some applications, the spatial dynamics with respect to different kinds of deformable boundaries have been analyzed in the point of view of vorticity and vortex dynal Reference Snaps of flow patterns/distributions of stream-function corresponding to the principle-axis-oscillation elliptic der(left)and stationary-wave-oscillation circular cylinder(right)respe 1. Xie X L, Chen Y, Shi Q. Some studies on mechanics of continuous mediums viewed as differential manifolds. Sci China-Phys Mech Astron, 2013, 56: 432-456 2. C.J. Wu, L. Wang and J.Z. Wu. Pression of Von Karman vortex street behind a circular cylinder by http://jpkc.fudaneducn/s/353/main.htm xiexilinofudan. edu. cn
Some Studies on Spatial Dynamics of Incompressible Two Dimensional Wakes of Cylinders with Deformable Boundaries XiLin XIE, Yu CHEN Department of Mechanics & Engineering Science, Fudan University, Shanghai, CHINA Coordinates and Governing Equation I Vorticity & stream-function with respect to the curvilinear coordinates including time explicitly 4ψ , g ij ∂ 2ψ ∂xi∂xj (x, t) − Γ k ij ∂ψ ∂xk (x, t) = −ω ω˙ = ∂ω ∂t (x, t) + V i ∂ω ∂xi (x, t) − ∂X ∂t i (x, t) ∂ω ∂xi (x, t) = 1 Re g ij ∂ 2ω ∂xi∂xj (x, t) − Γ k ij ∂ω ∂xk (x, t) (x, t), where ∂X ∂t i (x, t) = ∂X ∂t , g i I Pressure Equation for Incompressible flows with respect to the curvilinear coordinates including time explicitly ∆p = − V − ∂X ∂t (x, t) ⊗ ∇ : (∇ ⊗ V ) Verification of Algorithm As an verification of the whole algorithm, we reproduced the suppression of Vortex stress of a circular cylinder by introduce certain traveling wave on the cylinder’s boundary as reported firstly by C.J Wu et al [2]. Furthermore, we discovered that the same phenomenon can also occur on an elliptic cylinder as shown in Fig.1. Figure: Snaps of flow patterns of an elliptic cylinder with traveling wave boundary. The left and right subplots corresponding to the spatial distributions of stream-function and vorticity respectively in the case of Re=500. Global Dynamics a(t) = a0 sin(2πf t), b(t) = b0 sin(2πf t − π 2 ) r(t) = r0 + a sin(2πf t) cos(6θ) Distribution of streamline Distribution of vorticity Distribution of pressure Distribution of pressure Distribution of pressure Snaps of flow patterns/distributions of stream-function corresponding to the principle-axis-oscillation elliptic cylinder (left) and stationary-wave-oscillation circular cylinder (right) respectively in the case of Re = 100. Local / Boundary Dynamics Temporal distribution of σwall Time domain of τ at θ = 30 Temporal distribution of ∂ω ∂n Time domain of flux at θ = 30 Temporal distribution of max stress angle Contrastive Studies on Spatial Dynamics Global Dynamics Cylinder Type Flow Patterns Cd CL Mean value Amplitude Spectrum Analysis Spectrum Analysis SCC shedding 1.35 0.14 f0 f0 ROCC shedding 2.05 9.50 pf0 pf1 ± qf0 POEC Tearing, shedding 2.31 6.52 pf0 pf1 ± qf0 WOCC Tearing, shedding 1.73 3.06 pf0 pf1 ± qf0 Local / Boundary Dynamics Cylinder Type Shear Stress Vorticity Vorticity Flux Major Angle of Strain Time domain analysis Spectrum Analysis Time domain analysis Time domain analysis SCC local varying f0 local varying 45 ◦ ROCC global qusi-periodic varying pf1 ± qf0 Semi-cylinder qusi-periodic 45 ◦ POEC global qusi-periodic varying pf1 ± qf0 global qusi-periodic varying varying with deformation WOCC global qusi-periodic varying pf1 ± qf0 global qusi-periodic varying varying with deformation Remark: SCC referred to stationary circular cylinder; ROCC to radical-oscillation circular cylinder; POEC to principle-axis-oscillation elliptic cylinder; WOCC to stationary-wave-oscillation circular cylinder. f0 & f1 denote shedding frequency and boundary oscillation frequency respectively, p denotes nature number. Conclusion A novel kind of vorticity & stream-function algorithm for planar incompressible flows with deformable boundaries is put forward based on the finite deformation theory with respect to the curvilinear coordinates corresponding to the current physical configurations including time explicitly. As some applications, the spatial dynamics with respect to different kinds of deformable boundaries have been analyzed in the point of view of vorticity and vortex dynamics. Reference 1. Xie X L, Chen Y, Shi Q. Some studies on mechanics of continuous mediums viewed as differential manifolds. Sci China-Phys Mech Astron, 2013, 56:432-456. 2. C.J. Wu, L. Wang and J.Z. Wu. Spression of Von Karman vortex street behind a circular cylinder by traveling wave generated by a flexible surface. Journal of Fluid Mechanics 574:365-391,2007. Created with LATEXbeamerposter http://jpkc.fudan.edu.cn/s/353/main.htm xiexilin@fudan.edu.cn
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 2013年第14届欧洲湍流会议:Some Studies on Vorticity Dynamics for Two Dimensional Flows on Fixed Smooth Surfaces.pdf
- 2013年第14届欧洲湍流会议:Experimental Research of Turbulence Generation in Complex Jet Flows.pdf
- 2013年中国力学大会:基于几何形态为曲面的连续介质的有限变形理论研究一般固定曲面上的流动.pdf
- 2012年全国现代数学与力学学术会议:基于几何形态为曲面的连续介质的有限变形理论研究固定曲面上流动及曲面自身运动(史倩、陈瑜、谢锡麟).pdf
- 2013年全国水动力学研讨会:长时间多数据动态试验的热线分析(马云驰、蒋运幸、余宇轩、谢锡麟、麻伟巍).pdf
- 2012年北京大学力学博士生论坛:基于显含时间曲线坐标系的涡-流函数解法及其在可变形边界流动问题中的应用.pdf
- 2012年北京大学力学博士生论坛:基于几何形态为曲面的连续介质的有限变形理论研究固定曲面上流动及曲面自身运动.pdf
- 2012年全国现代数学与力学学术会议—基于显含时间曲线坐标系的涡——流函数解法及其在可变形边界流动问题中的应用.pdf
- 2013年全国水动力学研讨会:海面油污扩散运动的力学建模及相关数值研究.pdf
- 全国水动力学研讨会:二维类圆柱尾迹的空间动力学行为研究(Ⅰ局部空间动力学行为).pdf
- 实验研究正交圆柱尾迹的空间动力学行为 Experimental Studies on the Spatial Dynamical Behaviors of Wakes of Two Circular-Cylinders Forming A Cross.pdf
- 平面对称剪切流中螺旋涡的实验研究(实验研究平面对称剪切流中的螺旋涡).pdf
- 二维类圆柱边界的有限变形运动对其尾迹空间动力学行为的影响.pdf
- 《现代连续介质力学理论及实践》科学研究:SOME STUDIES ON THEORETICAL FRAMEWORK FOR TWO DIMENSIONAL FLOWS ON GENERAL FIXED SMOOTH SURFACES(Vorticity dynamics for 2D flows on fixed surfaces).pdf
- 真实开放流场空间动力学行为分析的基本思想及方法(复旦大学:谢锡麟,东华大学:麻伟巍).pdf
- 《水动力学研究与进展》:正交圆柱尾迹空间动力学行为的实验研究(复旦大学:余宇轩、谢锡麟,东华大学:麻伟巍).pdf
- 《现代连续介质力学理论及实践》参考资料:谢道夫《连续介质力学的发展方向和问题》.pdf
- 《现代连续介质力学理论及实践》参考资料:《力学丛书》郭仲衡著《非线性弹性力学》(共七章).pdf
- 《现代连续介质力学理论及实践》参考资料:郭仲衡《积极开展理性力学的研究》(北京大学数学力学系).pdf
- 《现代连续介质力学理论及实践》参考资料:郭仲衡《理性力学简介》(北京大学数学力学系).pdf
- 2013年第十四届全国分离流、旋涡和流动控制会议:边界可变形钝体的绕流场的空间动力学行为涡量动力学若干理论及其实践——吴介之等理论与应用(结合本组相关研究)现象与问题.pdf
- 2014年第十五届全国分离流、旋涡和流动控制会议:可变形壁面上涡量动力学相关理论结果及应用 ——变形率、切应力、涡量法向梯度.pdf
- 2013年中国力学大会:基于几何形态为曲面的连续介质的有限变形理论研究膜的有限变形振动.pdf
- 复旦大学本科生优秀毕业论文:数值研究边界可作有限变形运动的二维流动.pdf
- 复旦大学本科生优秀毕业论文:基于几何形态为曲面的连续介质的有限变形理论研究固定曲面上流动及曲面自身运动.pdf
- 复旦大学:《现代连续介质力学理论及实践》教学研究_追求具有一流水平的微积分与连续介质力学基础知识体系的教研与实践.pdf
- 复旦大学:《现代连续介质力学理论及实践》教学研究_教学研究与实践阶段性总结(谢锡麟).pdf
- 2010年全国力学课程论坛:基于现代张量分析的连续介质力学理论及其在流体力学中的实践.pdf
- 2010年全国力学课程论坛:“全国第三届力学课程论文报告论坛”纪要.pdf
- 2010年全国力学课程论坛:面对力学专业有关微积分教学 的若干体会.pdf
- 2011年全国力学史与方法论学术会议:“正本清源”在力学之数学及专业知识体系建立中的作用.pdf
- 2012年全国水动力学研讨会:现代张量分析在连续介质力学中的若干应用——相关教学与研究工作.pdf
- 2012年全国现代数学与力学学术会议:基于郭仲衡先生有关现代张量分析及有限变形理论知识 体系所开展的教学与研究的若干体会 ——相关教学与研究工作.pdf
- 2013年全国力学史与方法论学术会议:基于郭仲衡先生现代张量分析及有限变形理论知识体系 的相关教学与研究.pdf
- 组织教学研究与实践研讨—2011年03月—理论与应用力学专业教育教学复旦大学研讨会—专题报告 谢锡麟.pdf
- 组织教学研究与实践研讨:2011 年理论与应用力学专业教育教学 复旦大学研讨会 学术信息整理.pdf
- 组织教学研究与实践研讨—2012年01月—复旦大学力学系 谢锡麟报告.pdf
- 组织教学研究与实践研讨:内蕴形式广义Stokes公式及其在几何形态为曲面的连续介质之有限变形理论中的应用.pdf
- 组织教学研究与实践研讨:“现代连续介质力学理论及实践”课程体系——上海市教委2011年度重点教改项目.pdf
- 组织教学研究与实践研讨:《张量分析与微分几何基础》课程 教学研究与实践 阶段总结性报告.pdf