2013年第14届欧洲湍流会议:Some Studies on Vorticity Dynamics for Two Dimensional Flows on Fixed Smooth Surfaces

Some studies on vorticity Dynamics for Two Dimensional flows on fixed smooth surfaces XiLin XIE, Qian SHI and Yu CHEN Department of Mechanics Engineering Science, Fudan University, Shanghai, CHINA Configurations and Coordinates Casel: Wakes of a Circular Cylinder on Fixed Smooth Surfaces Current Parametric Cowfigarwon Top View Incompressible Flow on Twin-Bells Surface Fixed Smooth Surface E=Ef(5,n) Re=100 .·, x=x(2,) Initial Parametric Configuration Re=500 2(5) Deformation Gradient FA2(Es, t)g (as, t)8G(zg)ET() b Surface Gradient Operator ) 垂≡()。-(y)g。-(9,89) Distribution Vo-9)8g+时hg。-n)g+时go-9)n b Levi-Civita Gradient Operator vo-4到gV当)0-(189)会o-出时189) =VA,g。-g)8g Intrinsic Generalized Stokes Formulas of pressure To-更d= n x Momentum Conservation Curve integrals transferred to surface integral c f ar (, )do+ m- fov)v d=AA b Surface Tension Frem:=f 7T x nd=ys H ndo dx/dal()=(Dr)dx/dx b Inner Pressure Fet: =fx(pn)dl=JE - da sity Fris: fu(r x n).(V &V)d=uf V(Vi ase2: Flows on Fixed Undulated Helical Surface b Novel NSEs Curvatures Roles Distribution of Mean Curvature pa=-2(x,)+yH+可1()+Ka+fm pan=B(-P)+p2V吲+ Distribution of Vorticity(Re=100) b Mass Conservation 0=/需=如+…0)=m=如+/on)如 0+(M)=(+小+p=+== vorticity Stream-function for Incompressible flows NSEs Curvature Role 4=E[VV+2V(KGV)]+-6vAfaurd b Pressure Equation for Incompressible flows NSEs Curvature Role △p=(v⑧V):(VV)+Kd|V-2V·(VKa)-V·fs Governing Equation for General 2D Compressible flows b Stokes-Helmholtz Decomposition V=Vo+Vx(n), with(Ao=VV=e △=-(VxV)·n=-3 Corollary( Casewell Formula) On any fixed solid boundary where the general viscous boundary condition is 6=-[(V 8v):(VaV)+KaIVF]+VpVp satisfied by the fluid, namely V=0 on the boundary, the strain tensor can be represented as following vp(△V+V+KV)+21△+·(kv)+fm D=n②n+(u×n)8n+n②(axn) D-+kd2+vp·vp--△ oundary, the directions corresponding to the maximum or mi ge of element material 共v+vxu+2T+++v,V)+Jm ngth with the same absolute value 1-1/2 is a/4 or 3/4 with respect to the tangent direction of the boundary. b Vorticity Equation 3-Vp,-Vp+叫-Vx如+2(Ve+KcV)n △+2×(K2V)]n-vfm,n+(xfm)n Casel: Wakes of a Circular Cylinder on Fixed Smooth Surfaces Streamline Distribution(3D View) Vorticity Distribution(3D View Reference 1. Xie X L, Chen Y, Shi Q. Some studies on mechanics of continuous mediums viewed as differential manifolds. Sci China-Phys Mech Astron, 2013, 56: 432-4 2. Xie X L. A theoretical framework of vorticity dynamics for two dimensional flows on fixed smooth surfaces. arXiv: 1304.-5145v1 [physics. flu-dynJ 18 Apr 2013 http://jpkc.fudaneducn/s/353/main.htm xiexilinofudan. edu. cn
Some Studies on Vorticity Dynamics for Two Dimensional Flows on Fixed Smooth Surfaces XiLin XIE, Qian SHI and Yu CHEN Department of Mechanics & Engineering Science, Fudan University, Shanghai, CHINA Configurations and Coordinates I Deformation Gradient F , ∂xi Σ ∂ξA Σ (ξΣ, t)gi (xΣ, t) ⊗ GA (xΣ) ∈ T 2 (R 3 ) I Surface Gradient Operator Σ ∇ ◦ −Φ ≡ g l ∂ ∂xl ◦ − Φ i ·jgi ⊗ g j , g l ◦ − ∂ ∂xl Φ i ·jgi ⊗ g j =∇lΦ i ·j (g l ◦ −gi ) ⊗ g j + Φi ·j bli(g l ◦ −n) ⊗ g j + Φi ·j b j l (g l ◦ −gi ) ⊗ n I Levi-Civita Gradient Operator ∇ ◦ −Φ ≡(g l∇ ∂ ∂xl ) ◦ −(Φi ·jgi ⊗ g j ) , g l ◦ −∇ ∂ ∂xl (Φi ·jgi ⊗ g j ) =∇lΦ i ·j (g l ◦ −gi ) ⊗ g j Intrinsic Generalized Stokes Formulas I C τ ◦ −Φ dl = Z Σ n × Σ ∇ ◦ −Φ dσ I C Φ ◦ −τ dl = Z Σ Φ ◦ − n × Σ ∇ dσ I Momentum Conservation:Curve integrals transferred to surface integral Z t Σ ∂(ρV ) ∂t (x, t) dσ + I ∂ t Σ n · (ρV )V dl = Z t Σ ρ a dσ = Ften + F int pre + Fvis + Fsur I Surface Tension Ften := H c γτ × ndl = γ R Σ H ndσ I Inner Pressure F int pre := − H c τ × (p n)dl = R Σ − Σ ∇p − pHn dσ I Inner Viscosity Fvis := H c µ(τ × n) · (V ⊗ Σ ∇)dl = µ R Σ Σ ∇ · ( Σ ∇ ⊗ V )dσ I Novel NSEs Curvatures Roles ρal = − ∂p ∂xl (x, t) + µ g ij∇i∇jVl + ∇l (∇sVs) + KGVl + fsur,l ρan = H(γ − p) + µ 2b ij∇iVj + fsur,n I Mass Conservation 0 = Z t Σ ∂ρ ∂t(x, t) dσ + I ∂ t Σ n · (ρV ) dl = Z t Σ ∂ρ ∂t(x, t) dσ + Z t Σ ∇ · (ρV ) dσ ∂ρ ∂t(x, t) + ∇ · (ρV ) = ∂ρ ∂t(x, t) + V i ∂ρ ∂xi (x, t) + ρ∇iV i = ρ˙ + ρ θ = 0, θ := ∇iV i I Vorticity & Stream-function for Incompressible flows NSEs Curvature Role 4ψ , g ij ∂ 2ψ ∂xi∂xj (x, t) − Γ k ij ∂ψ ∂xk (x, t) = −ω 3 ω˙ 3 = µ ρ ∇s∇sω 3 + 2 kl3∇k(KGVl) + 1 ρ kl3∇kfsur,l I Pressure Equation for Incompressible flows NSEs Curvature Role −∆p = ρ[(V ⊗ ∇) : (∇ ⊗ V ) + KG|V | 2 ] − 2µV · (∇KG) − ∇ · f Σ, Governing Equation for General 2D Compressible flows I Stokes-Helmholtz Decomposition V = ∇φ + ∇ × (ψn), with ∆φ = ∇ · V =: θ ∆ψ = −(∇ × V ) · n = −ω 3 I Dilation Equation ˙θ = − (V ⊗ ∇) : (∇ ⊗ V ) + KG|V | 2 + 1 ρ 2∇ρ · ∇p − 1 ρ ∆p − µ ρ 2∇ρ · (∆V + ∇θ + KGV ) + 2µ ρ [∆θ + ∇ · (KGV )] + ∇ · fsur = − D : D − |ω| 2 2 + KG|V | 2 + 1 ρ 2∇ρ · ∇p − 1 ρ ∆p − µ ρ 2∇ρ · [−∇ × ω + 2(∇θ + KGV )] + 2µ ρ [∆θ + ∇ · (KGV )] + ∇ · fsur I Vorticity Equation ω˙ 3 = −θω3 − 1 ρ 2 [∇ρ, −∇p + µ[−∇ × ω + 2 (∇θ + KGV )], n] + µ ρ [∆ω + 2∇ × (KGV )] · n − 1 ρ 2 [∇ρ, fsur, n] + 1 ρ (∇ × fsur) · n Case1:Wakes of a Circular Cylinder on Fixed Smooth Surfaces Streamline Distribution (3D View) Vorticity Distribution (3D View) Introduction I Most face recognition approaches are sensitive to registration errors . rely on a very good initial alignment and illumination I We propose/analyze: . grid-based and dense extraction of local features . block-based matching accounting for different viewpoints and registration errors Feature Extraction I Interest point based feature extraction . SIFT or SURF interest point detector . leads to a very sparse description I Grid-based feature extraction . overlaid regular grid . leads to a dense description Orig. IP Grid Feature Description I Scale Invariant Feature Transform (SIFT) . 128-dimensional descriptor, histogram of gradients, scale invariant I Speeded Up Robust Features (SURF) . 64-dimensional descriptor, histogram of gradients, scale invariant I face recognition: invariance w.r.t. rotation is often not necessary . rotation dependent upright-versions U-SIFT, U-SURF-64, U-SURF-128 Feature Matching I Recognition by Matching . nearest neighbor matching strategy . descriptor vectors extracted at keypoints in a test image X are compared to all descriptor vectors extracted at keypoints from the reference images Yn, n = 1, · · · , N by the Euclidean distance . decision rule: X → r(X) = arg max c n max n X xi∈X δ(xi , Yn,c) o . additionally, a ratio constraint is applied in δ(xi , Yn,c) I Viewpoint Matching Constraints . maximum matching: unconstrained . grid-based matching: absolute box constraints . grid-based best matching: absolute box constraints, overlapping I Postprocessing . RANSAC-based outlier removal . RANSAC-based system combination Matching Examples for the AR-Face and CMU-PIE Database Feature Maximum Grid Grid-Best Maximum Grid Grid-Best Feature SIFT SURF U-SIFT U-SURF I Matching results for the AR-Face (left) and the CMU-PIE database (right) . maximum matching show false classification examples . grid matchings show correct classification examples . upright descriptor versions reduce the number of false matches Case1:Wakes of a Circular Cylinder on Fixed Smooth Surfaces Top View Incompressible Flow on Twin-Bells Surface Plane Re=100 Re=500 Distribution of vorticity Distribution of pressure Distribution of first eigenvalue of the strain tensor ˙ d t X/dλ R3 (λ) = (τ · D · τ ) d t X/dλ R3 Case2: Flows on Fixed Undulated Helical Surface Distribution of Vorticity (Re=100) Distribution of Mean Curvature Distribution of Gaussian Curvature Corollary (Caswell Formula) Corollary (Casewell Formula) On any fixed solid boundary where the general viscous boundary condition is satisfied by the fluid, namely V = 0 on the boundary, the strain tensor can be represented as following D = θn ⊗ n + 1 2 (ω × n) ⊗ n + 1 2 n ⊗ (ω × n) Corollary For any two dimensional incompressible viscous flow on any fixed smooth surface, on any fixed solid boundary, the directions corresponding to the maximum or minimum rate of change of element material arc length with the same absolute value |ω 3 |/2 is π/4 or 3π/4 with respect to the tangent direction of the boundary. Reference 1. Xie X L, Chen Y, Shi Q. Some studies on mechanics of continuous mediums viewed as differential manifolds. Sci China-Phys Mech Astron, 2013, 56:432-456. 2. Xie X L. A theoretical framework of vorticity dynamics for two dimensional flows on fixed smooth surfaces. arXiv:1304.5145v1 [physics.flu-dyn] 18 Apr 2013 Databases I AR-Face . variations in illumination . many different facial expressions I CMU-PIE . variations in illumination (frontal images from the illumination subset) Results: Manually Aligned Faces I AR-Face: 110 classes, 770 train, 770 test Descriptor Extraction # Features Error Rates [%] Maximum Grid Grid-Best SURF-64 IPs 164 × 5.6 (avg.) 80.64 84.15 84.15 SIFT IPs 128 × 633.78 (avg.) 1.03 95.84 95.84 SURF-64 64x64-2 grid 164 × 1024 0.90 0.51 0.90 SURF-128 64x64-2 grid 128 × 1024 0.90 0.51 0.38 SIFT 64x64-2 grid 128 × 1024 11.03 0.90 0.64 U-SURF-64 64x64-2 grid 164 × 1024 0.90 1.03 0.64 U-SURF-128 64x64-2 grid 128 × 1024 1.55 1.29 1.03 U-SIFT 64x64-2 grid 128 × 1024 0.25 0.25 0.25 I CMU-PIE: 68 classes, 68 train (“one-shot” training), 1360 test Descriptor Extraction # Features Error Rates [%] Maximum Grid Grid-Best SURF-64 IPs 164 × 6.80 (avg.) 93.95 95.21 95.21 SIFT IPs 128 × 723.17 (avg.) 43.47 99.33 99.33 SURF-64 64x64-2 grid 164 × 1024 13.41 4.12 7.82 SURF-128 64x64-2 grid 128 × 1024 12.45 3.68 3.24 SIFT 64x64-2 grid 128 × 1024 27.92 7.00 9.80 U-SURF-64 64x64-2 grid 164 × 1024 3.83 0.51 0.66 U-SURF-128 64x64-2 grid 128 × 1024 5.67 0.95 0.88 U-SIFT 64x64-2 grid 128 × 1024 16.28 1.40 6.41 Results: Unaligned Faces I Automatically aligned by Viola & Jones Descriptor Error Rates [%] AR-Face CMU-PIE SURF-64 5.97 15.32 SURF-128 5.71 11.42 SIFT 5.45 8.32 U-SURF-64 5.32 5.52 U-SURF-128 5.71 4.86 U-SIFT 4.15 8.99 I Manually aligned faces I Unaligned faces Results: Partially Occluded Faces I AR-Face: 110 classes, 110 train (“one-shot” training), 550 test Descriptor Error Rates [%] AR1scarf AR1sun ARneutral AR2scarf AR2sun Avg. SURF-64 2.72 30.00 0.00 4.54 47.27 16.90 SURF-128 1.81 23.63 0.00 3.63 40.90 13.99 SIFT 1.81 24.54 0.00 2.72 44.54 14.72 U-SURF-64 4.54 23.63 0.00 4.54 47.27 15.99 U-SURF-128 1.81 20.00 0.00 3.63 41.81 13.45 U-SIFT 1.81 20.90 0.00 1.81 38.18 12.54 U-SURF-128+R 1.81 19.09 0.00 3.63 43.63 13.63 U-SIFT+R 2.72 14.54 0.00 0.90 35.45 10.72 U-SURF-128+U-SIFT+R 0.90 16.36 0.00 2.72 32.72 10.54 Conclusions I Grid-based local feature extraction instead of interest points I Local descriptors: . upright descriptor versions achieved better results . SURF-128 better than SURF-64 I System robustness: manually aligned/unaligned/partially occluded faces . SURF more robust to illumination . SIFT more robust to changes in viewing conditions I RANSAC-based system combination and outlier removal Created with LATEXbeamerposter http://jpkc.fudan.edu.cn/s/353/main.htm xiexilin@fudan.edu.cn
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 2013年第14届欧洲湍流会议:Experimental Research of Turbulence Generation in Complex Jet Flows.pdf
- 2013年中国力学大会:基于几何形态为曲面的连续介质的有限变形理论研究一般固定曲面上的流动.pdf
- 2012年全国现代数学与力学学术会议:基于几何形态为曲面的连续介质的有限变形理论研究固定曲面上流动及曲面自身运动(史倩、陈瑜、谢锡麟).pdf
- 2013年全国水动力学研讨会:长时间多数据动态试验的热线分析(马云驰、蒋运幸、余宇轩、谢锡麟、麻伟巍).pdf
- 2012年北京大学力学博士生论坛:基于显含时间曲线坐标系的涡-流函数解法及其在可变形边界流动问题中的应用.pdf
- 2012年北京大学力学博士生论坛:基于几何形态为曲面的连续介质的有限变形理论研究固定曲面上流动及曲面自身运动.pdf
- 2012年全国现代数学与力学学术会议—基于显含时间曲线坐标系的涡——流函数解法及其在可变形边界流动问题中的应用.pdf
- 2013年全国水动力学研讨会:海面油污扩散运动的力学建模及相关数值研究.pdf
- 全国水动力学研讨会:二维类圆柱尾迹的空间动力学行为研究(Ⅰ局部空间动力学行为).pdf
- 实验研究正交圆柱尾迹的空间动力学行为 Experimental Studies on the Spatial Dynamical Behaviors of Wakes of Two Circular-Cylinders Forming A Cross.pdf
- 平面对称剪切流中螺旋涡的实验研究(实验研究平面对称剪切流中的螺旋涡).pdf
- 二维类圆柱边界的有限变形运动对其尾迹空间动力学行为的影响.pdf
- 《现代连续介质力学理论及实践》科学研究:SOME STUDIES ON THEORETICAL FRAMEWORK FOR TWO DIMENSIONAL FLOWS ON GENERAL FIXED SMOOTH SURFACES(Vorticity dynamics for 2D flows on fixed surfaces).pdf
- 真实开放流场空间动力学行为分析的基本思想及方法(复旦大学:谢锡麟,东华大学:麻伟巍).pdf
- 《水动力学研究与进展》:正交圆柱尾迹空间动力学行为的实验研究(复旦大学:余宇轩、谢锡麟,东华大学:麻伟巍).pdf
- 《现代连续介质力学理论及实践》参考资料:谢道夫《连续介质力学的发展方向和问题》.pdf
- 《现代连续介质力学理论及实践》参考资料:《力学丛书》郭仲衡著《非线性弹性力学》(共七章).pdf
- 《现代连续介质力学理论及实践》参考资料:郭仲衡《积极开展理性力学的研究》(北京大学数学力学系).pdf
- 《现代连续介质力学理论及实践》参考资料:郭仲衡《理性力学简介》(北京大学数学力学系).pdf
- 《现代连续介质力学理论及实践》参考资料:郭仲衡著《张量(理论和应用)》.pdf
- 2013年第14届欧洲湍流会议:Some Studies on Spatial Dynamics of Incompressible Two Dimensional Wakes of Cylinders with Deformable Boundaries.pdf
- 2013年第十四届全国分离流、旋涡和流动控制会议:边界可变形钝体的绕流场的空间动力学行为涡量动力学若干理论及其实践——吴介之等理论与应用(结合本组相关研究)现象与问题.pdf
- 2014年第十五届全国分离流、旋涡和流动控制会议:可变形壁面上涡量动力学相关理论结果及应用 ——变形率、切应力、涡量法向梯度.pdf
- 2013年中国力学大会:基于几何形态为曲面的连续介质的有限变形理论研究膜的有限变形振动.pdf
- 复旦大学本科生优秀毕业论文:数值研究边界可作有限变形运动的二维流动.pdf
- 复旦大学本科生优秀毕业论文:基于几何形态为曲面的连续介质的有限变形理论研究固定曲面上流动及曲面自身运动.pdf
- 复旦大学:《现代连续介质力学理论及实践》教学研究_追求具有一流水平的微积分与连续介质力学基础知识体系的教研与实践.pdf
- 复旦大学:《现代连续介质力学理论及实践》教学研究_教学研究与实践阶段性总结(谢锡麟).pdf
- 2010年全国力学课程论坛:基于现代张量分析的连续介质力学理论及其在流体力学中的实践.pdf
- 2010年全国力学课程论坛:“全国第三届力学课程论文报告论坛”纪要.pdf
- 2010年全国力学课程论坛:面对力学专业有关微积分教学 的若干体会.pdf
- 2011年全国力学史与方法论学术会议:“正本清源”在力学之数学及专业知识体系建立中的作用.pdf
- 2012年全国水动力学研讨会:现代张量分析在连续介质力学中的若干应用——相关教学与研究工作.pdf
- 2012年全国现代数学与力学学术会议:基于郭仲衡先生有关现代张量分析及有限变形理论知识 体系所开展的教学与研究的若干体会 ——相关教学与研究工作.pdf
- 2013年全国力学史与方法论学术会议:基于郭仲衡先生现代张量分析及有限变形理论知识体系 的相关教学与研究.pdf
- 组织教学研究与实践研讨—2011年03月—理论与应用力学专业教育教学复旦大学研讨会—专题报告 谢锡麟.pdf
- 组织教学研究与实践研讨:2011 年理论与应用力学专业教育教学 复旦大学研讨会 学术信息整理.pdf
- 组织教学研究与实践研讨—2012年01月—复旦大学力学系 谢锡麟报告.pdf
- 组织教学研究与实践研讨:内蕴形式广义Stokes公式及其在几何形态为曲面的连续介质之有限变形理论中的应用.pdf
- 组织教学研究与实践研讨:“现代连续介质力学理论及实践”课程体系——上海市教委2011年度重点教改项目.pdf