2013年第14届欧洲湍流会议:Experimental Research of Turbulence Generation in Complex Jet Flows

Experimental Research of Turbulence etcI4 Generation in Complex Jet Flows JIANG Yun-xing', XIE Xi-lin2, YU Yu-xuan2, MA Wei-wei lege of Science, Donghua University, Shanghai, CHINA an University, Shanghal, CHINA
TEMPLATE DESIGN © 2007 www.PosterPresentation s.com Introduction Visualization in the test section Nozzles which show in Figure.2 were used to enable flow visualization. The results of the flow visualization study are given in Figure.5 for the rolling up process of vortex rings. Images in Figure.5 are the lower half of the symmetrical pattern when the middle nozzle outlet is the shape of big rectangular. Experimental Research of Turbulence Generation in Complex Jet Flows JIANG Yun-xing1, XIE Xi-lin2, YU Yu-xuan2, MA Wei-wei1 1. College of Science, Donghua University, Shanghai, CHINA 2. Department of Mechanics & Engineering Science, Fudan University, Shanghai, CHINA Some spatial evolution of vortices has been observed and analyzed by self-developed flow facility (Figure.1). De De Table 1. Six middle nozzle shapes with their AR and equivalent diameter Figure 3. The schematic diagram of the experiment. Flow measurements are carried out by constant-temperature hot-wire anemometry. The mean velocity and turbulence measurements are make with DANTEC Streamline and 55P11 hot-wire probes which are calibrated by the calibration equipment. The probes arrangement is shown in Figure.4. Probes 1 and 2 are fixed on the nozzles which are used to perform correlation analysis. Probes 3 to 5 are the moving probes to surveying the test section. Figure 4. The probes arrangement for dynamic surveying. Figure 5. The rolling up process of vortex ring. We observed two types of vortex rings merging. One type (Figure.6) is neighbor vortex rings merged, termed briefly as NVRM hereinafter. Images in Figure.6 are the lower half of the symmetrical pattern when the middle nozzle outlet is the shape of big elliptic. The other (Figure.7) is neighbor vortex rings first merged on the same shear layer respectively, then merged on the tail of the core region, termed briefly as NVRMA hereinafter. Images in Figure.7 are the symmetrical pattern when the middle nozzle outlet is the shape of big rectangular. The leftto-right sequence can be viewed as an idealized instantaneous picture of the mixing layer, or alternatively as a progression in time while riding with the mean speed. Some typical phenomenon are observed directly by using the flow visualization. Furthermore, we research the typical flow field which we studied with dynamic surveying technology. The schematic diagram of the experiment is shown in Figure.3. The airs pass through the nozzle, mix up the smoke and led it to the test section. The laser source is set on the left, which is parallel to the nozzles. The laser beam goes through the cylindrical lens generate a laser light plane and an image acquisition system in the flow field which could be observed obviously. Figure 1 . The sketch of flow facility. We changed the middle nozzle outlet into different geometric configurations for the purpose of qualitative and quantifying the characteristics of the flows. Outlet geometries investigated are square, circular, elliptical and rectangular (Figure.2). Figure 2. The different geometries of the middle nozzle outlet. Different jet configurations with their aspect ratio AR and equivalent diameter in this study are given in Table 1. Figure 6. Neighbor vortex rings merged. Figure 7. Neighbor vortex rings first merged on the same shear layer respectively, then merged on the tail of the core region Figure.8 (a), (b), (c) we have observed that perfect spiraling is restored, which indicates its dynamical stability. The decrease of the separation distance is fairly independent of the Reynolds number. The onsets of the instability leading to the struction of the regular spiral structure are shown in Figure.8 (d), (e), (f), these spirals are stretched and are more and more entangled together by differential rotation. Both models demonstrate very close dynamical behavior. Figure 8. Six structures of helical vortexes. Visualize shown helical vortexes merged and non-merged phenomenon. As shown in Figure.9, nozzle outlet are big rectangular. Figure.9 (a) is the helical vortexes nonmerged phenomenon which found in middle layer Reynolds number is 2542, shear layers Reynolds number are 3812. Figure.9 (b) is the helical vortexes merged at the edge of the core reign which found in both middle layer and shear layers Reynolds number are 4660. Figure 9. The non-merging and merging phenomenon of helical vortexes. The vortex evolution process specifically depends on the middle nozzle outlet geometric configurations. Figure.10 reflects the sensitivity of the vortex evolution to change in Reynolds number. With another word, the curvature of the nozzle outlet in a mixing layer can be greatly influence the evolution of the coherent structures in turbulent shear flows. We can observed directly in the Figure.10, the Reynolds number of vortex rings turn to helical vortex increase with the middle nozzle outlet curvature and aspect ratio. Vortex evolution in the shear layer Figure 10. Vortex evolution with Reynolds numbers (the middle nozzle outlet geometric configurations). Dynamics serving in the test section Figure.11 shows the turbulence main flow velocity profiles for different vortex pattern with different middle nozzle outlet. Figure.11 (a) is the situation of NVRM. Lines 1 to 5 represent the middle nozzle outlet is circular, small elliptic, big elliptic, big rectangular and square, respectively; (b) is the situation of NVRMA. Lines 1 to 2 represent the middle nozzle outlet is small elliptic and big rectangular; (c) is the situation of helical vortices merged. Lines 1 to 4 represent the middle nozzle outlet is circular, small elliptic and big rectangular with different velocities, respectively; (d) is the situation of helical vortices non-merged. Lines 1 to 3 represent the middle nozzle outlet is small rectangular and big rectangular with different velocities, respectively. Our measure show the longest core region happened in the helical vortex merged situation when the middle nozzle outlet is big rectangular (line 3 in Figure.11 (c) and its aspect ration show in Table.1) which Reynolds number is 4660. The second long core region happened in the helical vortex non-merged situation (Figure.11 (d), line 2 reverse direction because of some rotate around the vortex). That is to say helical vortex can significantly improve the length of the core region. Figure 11. The turbulence main flow velocity profiles for different vortex pattern Energy spectra The power spectrum analysis is obtained by fast Fourier transform (FFT) of the velocity fluctuations. Figure.12 (a) to (g) show the turbulence main and shear layers flow frequency profiles for different vortices patterns with different middle nozzle outlet based on spatial FFT analysis of datasets for six thousand successive times. Figure 12. The power spectrum analysis of different vortices patterns. Table.2 summary the main information about Figure.12, including of characterization of frequencies, spatial evolution of dominant frequencies and leading vortices of different vortices patterns. Table 2. Characterization of frequencies, spatial evolution of dominant frequencies and leading vortices of different vortices patterns Cross-spectrum spectra based on two distinct turbulence components recorded at the same point in space. The results of Evolution of cross-spectrum spectra in this study are summarized in Figure.13. (b) and (c) show the broadband frequencies looks like (a) type helical vortex shown in Fig.8. The mechanism of this phenomenon have not clear. Figure 13. Evolution of cross-spectrum spectra in helical vortices merged patterns. These multiple experimental results shown that the curvature of the nozzle outlet in a mixing layer can be greatly influence the evolution of the coherent structures in turbulent shear flows. It also provide an opportunity for some researchers to compare and analyze with the numerical stimulation. 2111329@mail.dhu.edu.cn
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 2013年中国力学大会:基于几何形态为曲面的连续介质的有限变形理论研究一般固定曲面上的流动.pdf
- 2012年全国现代数学与力学学术会议:基于几何形态为曲面的连续介质的有限变形理论研究固定曲面上流动及曲面自身运动(史倩、陈瑜、谢锡麟).pdf
- 2013年全国水动力学研讨会:长时间多数据动态试验的热线分析(马云驰、蒋运幸、余宇轩、谢锡麟、麻伟巍).pdf
- 2012年北京大学力学博士生论坛:基于显含时间曲线坐标系的涡-流函数解法及其在可变形边界流动问题中的应用.pdf
- 2012年北京大学力学博士生论坛:基于几何形态为曲面的连续介质的有限变形理论研究固定曲面上流动及曲面自身运动.pdf
- 2012年全国现代数学与力学学术会议—基于显含时间曲线坐标系的涡——流函数解法及其在可变形边界流动问题中的应用.pdf
- 2013年全国水动力学研讨会:海面油污扩散运动的力学建模及相关数值研究.pdf
- 全国水动力学研讨会:二维类圆柱尾迹的空间动力学行为研究(Ⅰ局部空间动力学行为).pdf
- 实验研究正交圆柱尾迹的空间动力学行为 Experimental Studies on the Spatial Dynamical Behaviors of Wakes of Two Circular-Cylinders Forming A Cross.pdf
- 平面对称剪切流中螺旋涡的实验研究(实验研究平面对称剪切流中的螺旋涡).pdf
- 二维类圆柱边界的有限变形运动对其尾迹空间动力学行为的影响.pdf
- 《现代连续介质力学理论及实践》科学研究:SOME STUDIES ON THEORETICAL FRAMEWORK FOR TWO DIMENSIONAL FLOWS ON GENERAL FIXED SMOOTH SURFACES(Vorticity dynamics for 2D flows on fixed surfaces).pdf
- 真实开放流场空间动力学行为分析的基本思想及方法(复旦大学:谢锡麟,东华大学:麻伟巍).pdf
- 《水动力学研究与进展》:正交圆柱尾迹空间动力学行为的实验研究(复旦大学:余宇轩、谢锡麟,东华大学:麻伟巍).pdf
- 《现代连续介质力学理论及实践》参考资料:谢道夫《连续介质力学的发展方向和问题》.pdf
- 《现代连续介质力学理论及实践》参考资料:《力学丛书》郭仲衡著《非线性弹性力学》(共七章).pdf
- 《现代连续介质力学理论及实践》参考资料:郭仲衡《积极开展理性力学的研究》(北京大学数学力学系).pdf
- 《现代连续介质力学理论及实践》参考资料:郭仲衡《理性力学简介》(北京大学数学力学系).pdf
- 《现代连续介质力学理论及实践》参考资料:郭仲衡著《张量(理论和应用)》.pdf
- 浙江大学:《材料力学》课程教学资源(PPT课件讲稿)第一章 绪论(Preface).ppt
- 2013年第14届欧洲湍流会议:Some Studies on Vorticity Dynamics for Two Dimensional Flows on Fixed Smooth Surfaces.pdf
- 2013年第14届欧洲湍流会议:Some Studies on Spatial Dynamics of Incompressible Two Dimensional Wakes of Cylinders with Deformable Boundaries.pdf
- 2013年第十四届全国分离流、旋涡和流动控制会议:边界可变形钝体的绕流场的空间动力学行为涡量动力学若干理论及其实践——吴介之等理论与应用(结合本组相关研究)现象与问题.pdf
- 2014年第十五届全国分离流、旋涡和流动控制会议:可变形壁面上涡量动力学相关理论结果及应用 ——变形率、切应力、涡量法向梯度.pdf
- 2013年中国力学大会:基于几何形态为曲面的连续介质的有限变形理论研究膜的有限变形振动.pdf
- 复旦大学本科生优秀毕业论文:数值研究边界可作有限变形运动的二维流动.pdf
- 复旦大学本科生优秀毕业论文:基于几何形态为曲面的连续介质的有限变形理论研究固定曲面上流动及曲面自身运动.pdf
- 复旦大学:《现代连续介质力学理论及实践》教学研究_追求具有一流水平的微积分与连续介质力学基础知识体系的教研与实践.pdf
- 复旦大学:《现代连续介质力学理论及实践》教学研究_教学研究与实践阶段性总结(谢锡麟).pdf
- 2010年全国力学课程论坛:基于现代张量分析的连续介质力学理论及其在流体力学中的实践.pdf
- 2010年全国力学课程论坛:“全国第三届力学课程论文报告论坛”纪要.pdf
- 2010年全国力学课程论坛:面对力学专业有关微积分教学 的若干体会.pdf
- 2011年全国力学史与方法论学术会议:“正本清源”在力学之数学及专业知识体系建立中的作用.pdf
- 2012年全国水动力学研讨会:现代张量分析在连续介质力学中的若干应用——相关教学与研究工作.pdf
- 2012年全国现代数学与力学学术会议:基于郭仲衡先生有关现代张量分析及有限变形理论知识 体系所开展的教学与研究的若干体会 ——相关教学与研究工作.pdf
- 2013年全国力学史与方法论学术会议:基于郭仲衡先生现代张量分析及有限变形理论知识体系 的相关教学与研究.pdf
- 组织教学研究与实践研讨—2011年03月—理论与应用力学专业教育教学复旦大学研讨会—专题报告 谢锡麟.pdf
- 组织教学研究与实践研讨:2011 年理论与应用力学专业教育教学 复旦大学研讨会 学术信息整理.pdf
- 组织教学研究与实践研讨—2012年01月—复旦大学力学系 谢锡麟报告.pdf
- 组织教学研究与实践研讨:内蕴形式广义Stokes公式及其在几何形态为曲面的连续介质之有限变形理论中的应用.pdf