《计量经济学》课程教学资源(PPT课件讲稿,英文版)Chapter 7 Multiple Regression:Estimation and Hypothesis Testing

Chapter 7 Multiple regression Estimation and Hypothesis Testing Multiple Regression Model: A regression model with more than one explanatory variable, multiple because multiple influences (i.e., variables)affect the dependent variable
Chapter 7 Multiple Regression: --Estimation and Hypothesis Testing Multiple Regression Model: A regression model with more than one explanatory variable, multiple because multiple influences (i.e., variables)affect the dependent variable

7.1 The Three-variable Linear regression Model three-variable prf: nonstochastic form: E(Y=B+B2X2t+B3 (71) stochastic form: YtB+B2x2t+B3X3+ut (7.2) E(YD+ut B2, B3partial regression coefficients, partial slope coefficient B the change in the mean value of Y, e(Y), per unit change in X2 holding the value ofx constant B3: the change in the mean value of Y per unit change in X3, holding the value of x2 constant
7.1 The Three-variable Linear Regression Model three-variable PRF: nonstochastic form: E(Yt )=B1+B2X2 t+B3X3t (7.1) stochastic form: Yt=B1+B2X2 t+B3X3t+ut (7.2) = E(Yt )+ut B2 , B3~partial regression coefficients, partialslope coefficient B2: the change in the mean value of Y, E(Y), per unit change in X2, holding the value of X3 constant. B3 : the change in the mean value of Y per unit change in X3 , holding the value of X2 constant

7.2 Assumptions of Multiple Linear Regression Model A7. 1. X and X, are uncorrelated with the disturbance term u A7. 2. The error term u has a zero mean value E(u=0(7.7) A7. 3. Homoscedasticity that is, the variance of u, is constant var(u=o (78) A7.6. For hypothesis testing, the error term u follows the normal distribution with mean zero and (homoscedastic variance o2. That is, u, N(0, 02)(7.10) a7. 4. No autocorrelation exists between the error terms u and u cov(u, u )ij(7.9) A7. 5. No exact collinearity exists between X, and X3; that is there is no exact linear relationship between the two explanatory variables no collinearity or no multicollinearity exact linear relationship (2high or near perfect collinearity
7.2 Assumptions of Multiple Linear Regression Model A7.1. X2 and X3 are uncorrelatedwith the disturbance term u. A7.2. The error term u has a zero mean value E(ui )=0 (7.7) A7.3. Homoscedasticity, that is , the variance of u, is constant: var(ui )=σ2 (7.8) A7.6. For hypothesistesting, the error term u follows the normal distributionwith mean zero and (homoscedastic) variance σ 2 . That is , ui ~N(0, σ 2 ) (7.10 ) A7.4. No autocorrelation exists between the error terms ui and uj : cov(ui , uj ) i≠j (7.9) A7.5. No exact collinearity exists between X2 and X3 ; that is , there is no exact linear relationship between the two explanatory variables. --no collinearity,or no multicollinearity, ①exact linear relationship ②high or near perfect collinearity

7.3 Estimation of Parameters of Multiple Regression 7. 3. 1 Ordinary Least Squares (OLS) Estimators SRF: Stochastic form: Ytb+b2X2t+b3x3t+e. (7.13) Nonstochastic forn:Y:=b1+b2×2t+b3×3t (714) e=Yt-b1-b2X2+b3X3t(7.15) RSS e=∑(Y1-b1-b2x2-b3X (7.16) OLS EStimators Y-b,X-b,X (7.20 x2)∑x3) (7.21) ∑yx2)∑x3)-C∑y1x3)∑x2x3) 7.22) C∑x2)∑x3)-(∑x2x3)
7.3 Estimation of Parameters of Multiple Regression 7.3.1 Ordinary Least Squares(OLS)Estimators SRF: Stochastic form: Yt=b1+b2X2 t+b3X3t+et (7.13) Nonstochastic form: =b1+b2X2 t+b3X3t (7.14) et=Yt- et=Yt –b1-b2X2t+b3X3t (7.15) RSS: (7.16) OLS Estimators: b1= (7.20) b2= (7.21) b3= (7.22) Yt ˆ 2 t 1 2 2 t 3 3 t 2 t e = (Y − b − b X − b X ) Y − b2 X2 − b3 X3 2 2t 3t 2 3t 2 2t t 3t 2t 3t 2 t 2 3t ( x )( x ) ( x x ) ( y x t)( x )( y x )( x x ) − 2 2t 3t 2 3t 2 2t t 3t 2t 3t 2 t 2t 3t ( x )( x ) ( x x ) ( y x )( x ) ( y x )( x x ) − − Yt ˆ

7.3.2 Variance and Standard Errors of ols estimators We need the standard errors for two main purposes: (1) to establish confidence intervals for the true parameter values (2)to test statistical hypotheses. u-N(0, 02)bN(Bl, var(b)) b n( b,N(B,, var(b,)) var(b= X2∑x3+x3∑x21-2x2X∑x2x 2(7.23) n ∑x2∑x-(∑x2x3)2 seb1)=√ar(b1) (724) var(b2)= (7.25) 2t-3t (b2) (7.26 var( (b3) (7.27) C∑x2)∑x3)-C∑x2 (b3)= var(b3) (728)
7.3.2 Variance and Standard Errors of OLS Estimators We need the standard errors for two main purposes: (1) to establish confidence intervals for the true parameter values (2) to test statistical hypotheses. 1. ui ~N(0, σ 2 ) →b1~N(B1 , var(b1 )) b2~N(B2 , var(b2 )) b3~N(B3 , var(b3 )) var(b1 )= · (7.23) se(b1 )= (7.24) var(b2 )= · (7.25) se(b2 )= (7.26) var(b3 )= · (7.27) se(b3 )= (7.28) − + − + 2t 3t 2 2 3t 2 2t 2 3 2t 3t 2 2t 2 3 2 3t 2 2 x x ( x x ) X x X x 2X X x x n 1 2 σ var(b ) 1 2 2t 3t 2 3t 2 2t 2 3t ( x )( x ) ( x x ) x − 2 σ var(b ) 2 2 2t 3t 2 3t 2 2t 2 2t ( x )( x ) ( x x ) x − var(b ) 3 2 σ

2. In practicer 2 is unknown, so we use its estimator 2 then b,. b, b t(n-k) 2∑c(729) 3 (7.30) 7.3.3 Properties of oLS Estimators of Multiple regression BLUE 7.4 An Illustrative Example
2. In practice, is unknown, so we use its estimator, , then b1 , b2 , b3~t(n-k) (7.29) (7.30) 7.3.3 Properties of OLS Estimators of Multiple Regression --BLUE 7.4 An IllustrativeExample 2 σ 2 σ ˆ n 3 e σ 2 2 t − ˆ = 2 σ ˆ = σ ˆ

7.5 Goodness of fit of Estimated Multiple regression: Multiple Coefficient of Determination, R2 Multiple coefficient of determination. R2 TSS=ESS+RSS (733 R (7.34) TSS R2=b 2y,xa+b, 2y x(7.36) ∑ R2 also lies between0 and 1(just as r2) R: coefficient of multiple correlation the degree of linear association between Y and all the X variables jointly R is always taken to be positive. (rcan be positive or negative 7.6 Hypothesis Testing: General Comments:
7.5 Goodness of Fit of Estimated Multiple Regression: Multiple Coefficient of Determination, R2 • Multiple coefficient of determination, R2 TSS=ESS+RSS (7.33) R2= (7.34) R2= (7.36) R2 also lies between 0 and 1(just as r 2) R: coefficient of multiple correlation, the degree of linear association between Y and all the X variables jointly. R is always taken to be positive.(r can be positive or negative) 7.6 Hypothesis Testing: General Comments: TSS ESS + 2 t 2 t 2t 3 t 3t y b y x b y x

7.7 Individual Hypothesis Testing H: B=0 or b, =0 Hypothesis testing: t test df =n-k kthe number of parameters estimated (including the intercept) 7.7.1 The Test of Significance Approach 7.7.2 The Confidence Interval Approach
7.7 Individual Hypothesis Testing: H0 :B2 =0, or B3 =0 Hypothesis testing: t test d.f.=n-k k~the number of parameters estimated(including the intercept) • 7.7.1The Test of Significance Approach • 7.7.2The Confidence Interval Approach

7.8 Joint Hypothesis Testing -Testing the Joint Hypothesis That B, =B2=0 or R2=0 I. Null hypothesis H⌒:B,=B2=0 (745) H:R2=0 (746) Which means that the two explanatory variables together have no influence on Y, means the two explanatory variables explain zero percent of the variation in the dependent variable (1)Why this test? practice, in a multiple regression one or more variables individually have no effect on the dependent variable but collectively they have a significant impact on it
7.8 Joint Hypothesis Testing --Testing the Joint Hypothesis That B2=B3 =0 or R2=0 1.Null hypothesis: H0 :B2=B3 =0 (7.45) H0 :R2=0 (7.46) Which means that the two explanatory variables together have no influence on Y, means the two explanatory variables explain zero percent of the variation in the dependent variable. (1)Why this test? In practice, in a multiple regression one or more variables individually have no effect on the dependent variable but collectively they have a significant impact on it

2. How to test Analysis of variance (ANOVA) a study of the two components of Tss TSS=ESS+RSS 7.33 Under the assumption of the clrm (1) Ha:B,=B2=0 (2) Get a f statistic ESS/df. ESS/(k- F=RSS/df RSS/(n-k) (748) variance explained by X, and X unexplained variance ∑yx+b,∑yx)2(74 ∑e/n
2. How to test Analysis of variance (ANOVA) - - A study of the two components of TSS TSS=ESS+RSS (7.33) Under the assumption of the CLRM : (1) H0 :B2=B3=0 (2) Get a F statistic: F= (7.48) = variance explained by X2 and X3 unexplained variance = (7.49) RSS/(n k) ESS/(k 1) RSS/d.f. ESS/d.f. − − = − + e /(n 3) (b y x b y x )/2 2 t 2 t 2t 3 t 3t
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)Chapter 6 The Two-Variable Model:Hypothesis Testing.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)Chapter 5 Basic Ideas of Linear Regression:the Two-Variable Model.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)Chapter 4 STATISTICALINFERENCE:ESTIMATION AND HYPOTHESES TESTING.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)Chapter 3 SOME IMPORTANT PROBABILITY DISTRIBUTIONS.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)Chapter 2 A REVIEW OF BASIC STATISTICAL CONCEPTS.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)Chapter 1 THE NATURE AND SCOPE OF ECONOMETRICS.ppt
- 《国际贸易实务》课程教学资源(讲义)第十一章 进口合同的履行.pdf
- 《国际贸易实务》课程教学资源(讲义)第十章 出口合同的履行.pdf
- 《国际贸易实务》课程教学资源(讲义)第九章 国际货物买卖合同的商订.pdf
- 《国际贸易实务》课程教学资源(讲义)商品的检验.pdf
- 《国际贸易实务》课程教学资源(讲义)支付票据.pdf
- 《国际贸易实务》课程教学资源(讲义)进出口价格的确定.pdf
- 《国际贸易实务》课程教学资源(讲义)海洋运输货物保险.pdf
- 《国际贸易实务》课程教学资源(讲义)交货与装运.pdf
- 《国际贸易实务》课程教学资源(讲义)表示商品品质的方法、进出口合同中的品质条款、卖方违反品质条款时的处理.pdf
- 《国际贸易实务》课程教学资源(讲义)贸易术语(Trade Terms Trade Terms).pdf
- 《国际贸易实务》课程教学资源(讲义)第一章 绪论.pdf
- 《国际贸易实务》课程教学资源(讲义)第十二章 国际贸易方式.pdf
- 《投资学 Investments》课程教学资源(PPT课件)第9章 证券市场与交易机制.ppt
- 《投资学 Investments》课程教学资源(PPT课件)第8章 套利定价理论(APT).ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)Chapter 8 Functional Forms of Regression Model.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)Chapter 9 Regression on Dummy Explanatory Variables.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)Chapter 10 Multicollinearity - What Happens if Explanatory Variables are Correlated.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)Chapter 11 Heteroscedasticity - What Happens if the Error anfurke Variance is Nonconstant.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)Chapter 12 Autocorrelation - What Happens Error Terms are Correlated.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)Chapter 13 Model Selection - Criteria and Tests.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)Chapter 14 Selected Topics in Single Equation Regression Models.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)Chapter 15 Simultaneous Equation Models.ppt
- 山东大学:《公共经济学》课程电子教案(共七部分).doc
- 《房地产经济学》第十二章 房地产经济的宏观调控.doc
- 《房地产经济学》第十章 住宅消费与住房制度.doc
- 《房地产经济学》第十一章 房地产业与国民经济.doc
- 《房地产经济学》第八章 房地产投资.doc
- 《房地产经济学》第四章 房地产市场.doc
- 《房地产经济学》第七章 房地产开发.doc
- 《房地产经济学》第五章 房地产价格.doc
- 《房地产经济学》第九章 房地产金融.doc
- 《房地产经济学》第六章 房地产企业.doc
- 《房地产经济学》导论.doc
- 《房地产经济学》第二章 土地与土地使用制度.doc