《计量经济学》课程教学资源(PPT课件讲稿,英文版)Chapter 14 Selected Topics in Single Equation Regression Models

Chapter 14 Selected Topics in Single Equation Regression Models
Chapter 14 Selected Topics in Single Equation Regression Models

14.1 Restricted Least Squares (RLS) 1. oLS and rls (1) Unrestricted least squares(ULS) When using the ordinary least square method(ols) to estimate the parameters we do not put any prior constraint(s)or restriction (s)on the parameters So we can estimate the parameters without any restrictions. This is Uls
14.1 Restricted Least Squares(RLS) ◼ 1. OLS and RLS (1)Unrestricted least squares(ULS): When using the ordinary least square method(OLS) to estimate the parameters, we do not put any prior constraint(s)or restriction(s) on the parameters. So we can estimate the parameters without any restrictions. This is ULS

(2)Restricted least squares(RLs) inY=B1+B2×21+B×31+u1 If we put any restrictions on the parameters such as B.=2 or B.+ B.=1. we use RLs method to estimate The steps of RLS: transform the data to take into account the restrictions suggested by the relevant theory apply the least squares method (ols)
(2)Restricted least squares(RLS) In Yi=B1+B2X2i+B3X3i+ui If we put any restrictions on the parameters, such as B2 =2, or B2+ B3 =1, we use RLS method to estimate. The steps of RLS: ·transform the data to take into account the restrictions suggested by the relevant theory, ·apply the least squares method (OLS)

2.Test of the validity of the restriction (s) Le七 R2=R2 from the unrestricted regression R2-R2 from the restricted regression m =the number of linear restrictions im posed k =the number of parameters estimated in the unrestricted regression n =the number of observations
◼ 2.Test of the validity of the restriction(s): Let R2=R2 from the unrestricted regression R *2=R2 from the restricted regression m =the number of linear restrictions imposed k =the number of parameters estimated in the unrestricted regression n =the number of observations

+: the restriction(s)is valid F (R2-R2)m- Fmu-ky 14.8 (1-R2)/(n-k) Estimate the Us regression and obtain the r2 Estimate the Rls regression and obtain Find out the number of restrictions(m). Find out the coefficients estimated in the unrestricted regression (k) Compute F value
H0 : the restriction(s) is valid (14.8) ·Estimate the ULS regression and obtain the R2 ·Estimate the RLS regression and obtain R *2 ·Find out the number of restrictions(m). ·Find out the coefficients estimated in the unrestricted regression(K) ·Compute F value ( ) 2 ( ) 2 *2 ~ (1 )/( ) / Fm n k R n k R R m F − − − − =

Hypothesis testing If F>F refuse H the restriction(s) imposed by the theory is not valid ( statistically speaking), reject the restricted least squares regression. use the standard ols method If F<F, accept H the given restriction is valid, the rls regression is preferred to ULS
Hypothesis testing: If F>Fc , refuse H0 , the restriction(s) imposed by the theory is not valid (statistically speaking), reject the restricted least squares regression , use the standard OLS method. If F<Fc , accept H0 , the given restriction is valid, the RLS regression is preferred to ULS

14.2 Dynamic Economic Models Autoregressive and Distributed Lag models ■1。 Definition Dynamic models/ Distributed lag models There is a non-contemporaneous, or lagged, relationship between Y and the x for the effect of a unit change in the value of the explanatory variable is spread over. or distributed over. a number of time periods
14.2 Dynamic Economic Models: Autoregressive and Distributed Lag Models ◼ 1. Definition Dynamic models/ Distributed lag models: --There is a non-contemporaneous, or lagged, relationship between Y and the Xs , for the effect of a unit change in the value of the explanatory variable is spread over, or distributed over, a number of time periods

The reasons of the dependent variable respond to a unit change in the explanatory variable(s)with a time lag Psychological reasons Technological reasons, such as the purchase of PC, automobile Institutional reasons, such as multiyear contracts
The reasons of the dependent variable respond to a unit change in the explanatory variable(s) with a time lag. · Psychological reasons. · Technological reasons, such as the purchase of PC, automobile · Institutional reasons, such as multiyear contracts

k-period distributed lag model Y=A+B义+B义+B2X2+…+B义tA+ut(1413) Bo>B>B2 The effect of a unit change in the value of the explanatory variable is felt over k periods. B: the short-run /impact multiplier, which means “ the change in the mean value of Y following a un此t change in× in the same period” (B +B ).(B +B, +B,): interim/intermediate multipliers “… in the next, following period” ∑ B,=Bo+B,+B,+.+B, long-run/total multiplier. =n
k-period distributed lag model Yt=A+B0Xt+B1Xt-1+B2Xt-2+…+BkXt-k+ut (14.13) B0>B1>B2 The effect of a unit change in the value of the explanatory variable is felt over k periods. ◼ B0 : the short-run /impact multiplier, which means “the change in the mean value of Y following a unit change in X in the same period” ◼ (B0+B1 ),(B0+B1+B2 ):interim/intermediate multipliers. “ ………in the next, following period” long-run/total multiplier. = = + + + + k i n Bi B0 B1 B2 Bk

2. Problems in estimation of distributed Lag Models. The distributed lag model (14.13) does not violate any of the standard assumptions of the classical linear regression model(CLRM), but when we use the ols to estimate. there are some practical problems: (1 Economic theory does not tell us how many lagged values of the explanatory variables should be introduced
◼ 2.Problems in estimation of Distributed Lag Models: The distributed lag model (14.13) does not violate any of the standard assumptions of the classical linear regression model (CLRM), but when we use the OLS to estimate, there are some practical problems: (1)Economic theory does not tell us how many lagged values of the explanatory variables should be introduced
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)Chapter 13 Model Selection - Criteria and Tests.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)Chapter 12 Autocorrelation - What Happens Error Terms are Correlated.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)Chapter 11 Heteroscedasticity - What Happens if the Error anfurke Variance is Nonconstant.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)Chapter 10 Multicollinearity - What Happens if Explanatory Variables are Correlated.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)Chapter 9 Regression on Dummy Explanatory Variables.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)Chapter 8 Functional Forms of Regression Model.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)Chapter 7 Multiple Regression:Estimation and Hypothesis Testing.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)Chapter 6 The Two-Variable Model:Hypothesis Testing.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)Chapter 5 Basic Ideas of Linear Regression:the Two-Variable Model.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)Chapter 4 STATISTICALINFERENCE:ESTIMATION AND HYPOTHESES TESTING.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)Chapter 3 SOME IMPORTANT PROBABILITY DISTRIBUTIONS.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)Chapter 2 A REVIEW OF BASIC STATISTICAL CONCEPTS.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)Chapter 1 THE NATURE AND SCOPE OF ECONOMETRICS.ppt
- 《国际贸易实务》课程教学资源(讲义)第十一章 进口合同的履行.pdf
- 《国际贸易实务》课程教学资源(讲义)第十章 出口合同的履行.pdf
- 《国际贸易实务》课程教学资源(讲义)第九章 国际货物买卖合同的商订.pdf
- 《国际贸易实务》课程教学资源(讲义)商品的检验.pdf
- 《国际贸易实务》课程教学资源(讲义)支付票据.pdf
- 《国际贸易实务》课程教学资源(讲义)进出口价格的确定.pdf
- 《国际贸易实务》课程教学资源(讲义)海洋运输货物保险.pdf
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)Chapter 15 Simultaneous Equation Models.ppt
- 山东大学:《公共经济学》课程电子教案(共七部分).doc
- 《房地产经济学》第十二章 房地产经济的宏观调控.doc
- 《房地产经济学》第十章 住宅消费与住房制度.doc
- 《房地产经济学》第十一章 房地产业与国民经济.doc
- 《房地产经济学》第八章 房地产投资.doc
- 《房地产经济学》第四章 房地产市场.doc
- 《房地产经济学》第七章 房地产开发.doc
- 《房地产经济学》第五章 房地产价格.doc
- 《房地产经济学》第九章 房地产金融.doc
- 《房地产经济学》第六章 房地产企业.doc
- 《房地产经济学》导论.doc
- 《房地产经济学》第二章 土地与土地使用制度.doc
- 《房地产经济学》第三章 城市地租与土地区位.doc
- 《房地产经济学》导论.doc
- 保险职业学院:《保险学概论》课程教学资源(PPT课件讲稿)习题库.doc
- 保险职业学院:《保险学概论》课程教学资源(PPT课件讲稿)第十二章 社会保险.ppt
- 保险职业学院:《保险学概论》课程教学资源(PPT课件讲稿)第一章 风险与保险.ppt
- 保险职业学院:《保险学概论》课程教学资源(PPT课件讲稿)第七章 再保险.ppt
- 保险职业学院:《保险学概论》课程教学资源(PPT课件讲稿)第三章 保险的基本原则.ppt