《计量经济学》课程教学资源(PPT课件讲稿,英文版)Chapter 15 Simultaneous Equation Models

Chapter 15 Simultaneous Equation Models
Chapter 15 Simultaneous Equation Models

Single equation regression models - The dependent variable, Y, is expressed as a linear function of one or more explanatory variables, the Xs Assumption the cause-and-effect relationship, if any, between Y and the Xs is unidirectional: explanatory variables are the cause; the dependent variable is the effect
• Single equation regression models: ——The dependent variable, Y, is expressed as a linear function of one or more explanatory variables, the Xs. Assumption the cause-and-effect relationship, if any, between Y and the Xs is unidirectional: ·explanatory variables are the cause; ·the dependent variable is the effect

Simultaneous equation regression models: regression models in which there is more than one equation in which there are feedback relationships among variables
• Simultaneous equation regression models: ——Regression models in which there is more than one equation in which there are feedback relationships among variables

15.1 The Nature of Simultaneous Equation Models C=B+B. Io YC+ Endogenous variable Variable that is an inherent part of the system being studied and that is determined within the system Variable that is caused by other variables in a causal system Exogenous variable/predetermined variable Variable entering from and determined from outside the system being studied C If there are more endogenous variables, there will be more equations
15.1 The Nature of Simultaneous Equation Models Ct=B1+B2Yt+ut Yt=Ct+It Endogenous variable: Variable that is an inherent part of the system being studied and that is determined within the system. Variable that is caused by other variables in a causal system Exogenous variable/predetermined variable: Variable entering from and determined from outside the system being studied. ◆ If there are more endogenous variables, there will be more equations

15.2 The Simultaneous Equation Bias Inconsistency of ols Estimators C+ =(Bo+B1Y+u)+1 =B+B,Y+u+ B 1-B,1-B 1-B, The explanatory variable in a regression equation is correlated with the error term, this explanatory variable becomes a random, or stochastic variable
15.2 The Simultaneous Equation Bias: Inconsistency of OLS Estimators Yt=Ct+It =(B0+B1Yt+ut )+It =B0+B1Yt+ut+It • The explanatory variable in a regression equation is correlated with the error term, this explanatory variable becomes a random, or stochastic variable. t t ut B I B B B Y 1 1 1 0 1 1 1 1 1 − + − + − =

In the presence of simultaneous problem the Ols estimators are generally not BLUE They are biased in small sample) and inconsistent (in large sample) Inconsistent estimator is the estimator which does not approach the true parameter value even if the sample size increases definitely
In the presence of simultaneous problem, the OLS estimators are generally not BLUE. They are biased ( in small sample ) and inconsistent(in large sample) Inconsistent estimator is the estimator which does not approach the true parameter value even if the sample size increases indefinitely

153. The method of Indirect Least Squares (ILS) 1. Simplify the original model, and get the reduced form regression model C-B,+BY+ox B B 1-B21-B21-B2 C=A+A2 2+Vt A1=B/(1B2)A2=B2/(1-B2),andu=u/(1-B2
15.3. The Method of Indirect Least Squares(ILS) 1. Simplify the original model, and get the reduced form regression model Ct=B1+B2Yt+ut Ct=A1+A2 I 2+vt A1=B1 /(1-B2 ),A2=B2 /(1-B2 ),andυt=ut /(1-B2 ). t t ut B I B B B B C 2 2 2 2 1 1 1 1 1 − + − + − =

2. Applying OLS to the reduced form of the model, get the OLS estimators of the reduced form model 3. According to the relationship between the parameters of the reduced form model and the parameters of the original model, obtain the estimators of the original parameters these estimators are the indirect least squares estimators A B 11+2 1+A
2. Applying OLS to the reduced form of the model, get the OLS estimators of the reduced form model. 3.According to the relationship between the parameters of the reduced form model and the parameters of the original model, obtain the estimators of the original parameters, these estimators are the indirect least squares estimators. 2 1 1 1 A A B + = 2 2 2 1 A A B + =

The Ils estimators are consistent estimators, as the sample size increases indefinitely, there estimators converge to their true population values. In small samples, the ILS estimators may be biased. In contrast, the Ols estimators are biased as well as inconsistent
The ILS estimators are consistent estimators,as the sample size increases indefinitely, there estimators converge to their true population values. In small samples, the ILS estimators may be biased. In contrast, the OLS estimators are biased as well as inconsistent

Whether we can use the method of indirect least squares to estimate the parameters of Simultaneous equation models, depends on whether we can retrieve the original structural parameters from the reduced form estimates: the answer depends on the so-called identification problem
Whether we can use the method of indirect least squares to estimate the parameters of simultaneous equation models, depends on whether we can retrieve the original structural parameters from the reduced form estimates: the answer depends on the so-called identification problem
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)Chapter 14 Selected Topics in Single Equation Regression Models.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)Chapter 13 Model Selection - Criteria and Tests.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)Chapter 12 Autocorrelation - What Happens Error Terms are Correlated.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)Chapter 11 Heteroscedasticity - What Happens if the Error anfurke Variance is Nonconstant.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)Chapter 10 Multicollinearity - What Happens if Explanatory Variables are Correlated.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)Chapter 9 Regression on Dummy Explanatory Variables.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)Chapter 8 Functional Forms of Regression Model.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)Chapter 7 Multiple Regression:Estimation and Hypothesis Testing.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)Chapter 6 The Two-Variable Model:Hypothesis Testing.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)Chapter 5 Basic Ideas of Linear Regression:the Two-Variable Model.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)Chapter 4 STATISTICALINFERENCE:ESTIMATION AND HYPOTHESES TESTING.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)Chapter 3 SOME IMPORTANT PROBABILITY DISTRIBUTIONS.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)Chapter 2 A REVIEW OF BASIC STATISTICAL CONCEPTS.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)Chapter 1 THE NATURE AND SCOPE OF ECONOMETRICS.ppt
- 《国际贸易实务》课程教学资源(讲义)第十一章 进口合同的履行.pdf
- 《国际贸易实务》课程教学资源(讲义)第十章 出口合同的履行.pdf
- 《国际贸易实务》课程教学资源(讲义)第九章 国际货物买卖合同的商订.pdf
- 《国际贸易实务》课程教学资源(讲义)商品的检验.pdf
- 《国际贸易实务》课程教学资源(讲义)支付票据.pdf
- 《国际贸易实务》课程教学资源(讲义)进出口价格的确定.pdf
- 山东大学:《公共经济学》课程电子教案(共七部分).doc
- 《房地产经济学》第十二章 房地产经济的宏观调控.doc
- 《房地产经济学》第十章 住宅消费与住房制度.doc
- 《房地产经济学》第十一章 房地产业与国民经济.doc
- 《房地产经济学》第八章 房地产投资.doc
- 《房地产经济学》第四章 房地产市场.doc
- 《房地产经济学》第七章 房地产开发.doc
- 《房地产经济学》第五章 房地产价格.doc
- 《房地产经济学》第九章 房地产金融.doc
- 《房地产经济学》第六章 房地产企业.doc
- 《房地产经济学》导论.doc
- 《房地产经济学》第二章 土地与土地使用制度.doc
- 《房地产经济学》第三章 城市地租与土地区位.doc
- 《房地产经济学》导论.doc
- 保险职业学院:《保险学概论》课程教学资源(PPT课件讲稿)习题库.doc
- 保险职业学院:《保险学概论》课程教学资源(PPT课件讲稿)第十二章 社会保险.ppt
- 保险职业学院:《保险学概论》课程教学资源(PPT课件讲稿)第一章 风险与保险.ppt
- 保险职业学院:《保险学概论》课程教学资源(PPT课件讲稿)第七章 再保险.ppt
- 保险职业学院:《保险学概论》课程教学资源(PPT课件讲稿)第三章 保险的基本原则.ppt
- 保险职业学院:《保险学概论》课程教学资源(PPT课件讲稿)第九章 保险经营.ppt