《计量经济学》课程教学资源(PPT课件讲稿,英文版)Chapter 13 Model Selection - Criteria and Tests

Chapter 13 Model selection: Criteria and Tests
Chapter 13 Model Selection: Criteria and Tests

One clrm assumption is: The model used in empirical analysis is correctly specified
One CLRM assumption is: The model used in empirical analysis is “correctly specified

Correct specification"of a model means No theoretically relevant variable has been excluded from the model No unnecessary or irrelevant variables are included in the model The functional form of the model is correct
No theoretically relevant variable has been excluded from the model. No unnecessary or irrelevant variables are included in the model. The functional form of the model is correct “Correct specification ”of a model means:

13.1 The Attributes of a good model Criteria to judge a model: Principle of parsimony A model should be kept as simple as possible 2. Identifiability For a given set of data the estimated parameters must have unique values 3. Goodness of fit Model is judged good by the higher adjusted R(=R2)
13.1 The Attributes of a Good Model ——Criteria to judge a model: 1. Principle of parsimony A model should be kept as simple as possible. 2. Identifiability For a given set of data the estimated parameters must have unique values 3. Goodness of fit. Model is judged good by the higher adjusted R2 (= ) 2 R

4.Theoretical consistency In constructing a model we should have some theoretical underpinning 5. Predictive power Choose the model whose theoretical predictions are borne out by actual experience
4. Theoretical consistency In constructing a model we should have some theoretical underpinning 5. Predictive power Choose the model whose theoretical predictions are borne out by actual experience

13.2 Types of Specification Errors 1. Omitting a Relevant Variable: Underfitting or "Underspecifying"a Model True model:Yt=B1+B2×2+B3×3t+pt(13.1) Misspecified model:Y =A1+A2X2t+ut(13.2)
13.2 Types of Specification Errors 1.Omitting a Relevant Variable: “Underfitting” or “Underspecifying” a Model True model: Yt=B1+B2X2t+B3X3t+μt (13.1) Misspecified model: Yt=A1+A2X2t+μt (13.2)

The consequences of omitting variable bias(X3) (1 If X, X, are correlated: Oa, and a, are biased ar, a, can have an upward or downward bias E(a1)≠B1E(a1)=B1+B3(X3-b2X2)(13.4) E(a2)+B2 E(a2)=B2+B3 b32 o ar and a, are inconsistent (2)f×2and×3 are not correlated a2 is unbiased, consistent, b32 will be zero a, biased, unless X, is zero in the model(13. 4)
(1)If X2 ,X3 are correlated: ◎a1 and a2 are biased, a1 , a2 can have an upward or downward bias E(a1 )≠B1 E(a1 )= B1 +B3( (13.4) E(a2 ) ≠B2 E(a2 )= B2 +B3b32 ◎ a1 and a2 are inconsistent. (2)If X2 and X3 are not correlated a2 is unbiased, consistent, b32 will be zero a1 biased, unless is zero in the model(13.4) X b X ) 3 − 32 2 The consequences of omitting variable bias (X3 ) X3

(3) The error variance estimated from the misspecified model is a biased estimator of the true error variance g 2 The conventionally estimated variance of a2 is a biased estimator of the variance of the true estimator b2 B 2 .E[var(a2)]=var(b2)+ 2 21 ' Var(a2)will overestimate the true variance of b2, that is, it will have a positive bias. (4) The usual confidence interval and hypothesis-testing procedures are unreliable. The confidence interval will be wider
(3)The error variance estimated from the misspecified model is a biased estimator of the true error variance σ2 ——The conventionally estimated variance of a2 is a biased estimator of the variance of the true estimator b2 ∵ E[var(a2 )]=var(b2 )+ ∴Var(a2 ) will overestimate the true variance of b2 , that is, it will have a positive bias. (4)The usual confidence interval and hypothesis-testing procedures are unreliable. The confidence interval will be wider. 2 2i 2 3i 2 3 (n - 2) x B x

2. Inclusion of irrelevant variables Overfitting a Model Inclusion of irrelevant variables will certainly increase R2, which might increase the predictive power of the model True mode:Y=B1+B2X2i+u (13. 9) Misspecified model Y=A1+A2×2+A3X3+v;(13.10)
Inclusion of irrelevant variables will certainly increase R2 ,which might increase the predictive power of the model. True model: Yi=B1+B2X2i+μi (13.9) Misspecified model: Yi=A1+A2X2i+ A3X3i+ vi (13.10) 2.Inclusion of Irrelevant Variables: —— “Overfitting” a Model

Consequences of inclusion of irrelevant variables in a model IThe Ols estimators are unbiased and consistent. E(al= b E(a? E(a3)=0 (2)The estimator of o 2 is correctly estimated (3) The standard confidence interval and hypothesis testing procedure on the basis of the t and f tests remain valid
(1)The OLS estimators are unbiased and consistent. E(a1 ) = B1 E(a2 ) = B2 E(a3 ) = 0 (2)The estimator of σ2 is correctly estimated. (3)The standard confidence interval and hypothesistesting procedure on the basis of the t and F tests remain valid. Consequences of inclusion of irrelevant variables in a model:
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)Chapter 12 Autocorrelation - What Happens Error Terms are Correlated.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)Chapter 11 Heteroscedasticity - What Happens if the Error anfurke Variance is Nonconstant.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)Chapter 10 Multicollinearity - What Happens if Explanatory Variables are Correlated.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)Chapter 9 Regression on Dummy Explanatory Variables.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)Chapter 8 Functional Forms of Regression Model.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)Chapter 7 Multiple Regression:Estimation and Hypothesis Testing.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)Chapter 6 The Two-Variable Model:Hypothesis Testing.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)Chapter 5 Basic Ideas of Linear Regression:the Two-Variable Model.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)Chapter 4 STATISTICALINFERENCE:ESTIMATION AND HYPOTHESES TESTING.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)Chapter 3 SOME IMPORTANT PROBABILITY DISTRIBUTIONS.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)Chapter 2 A REVIEW OF BASIC STATISTICAL CONCEPTS.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)Chapter 1 THE NATURE AND SCOPE OF ECONOMETRICS.ppt
- 《国际贸易实务》课程教学资源(讲义)第十一章 进口合同的履行.pdf
- 《国际贸易实务》课程教学资源(讲义)第十章 出口合同的履行.pdf
- 《国际贸易实务》课程教学资源(讲义)第九章 国际货物买卖合同的商订.pdf
- 《国际贸易实务》课程教学资源(讲义)商品的检验.pdf
- 《国际贸易实务》课程教学资源(讲义)支付票据.pdf
- 《国际贸易实务》课程教学资源(讲义)进出口价格的确定.pdf
- 《国际贸易实务》课程教学资源(讲义)海洋运输货物保险.pdf
- 《国际贸易实务》课程教学资源(讲义)交货与装运.pdf
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)Chapter 14 Selected Topics in Single Equation Regression Models.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)Chapter 15 Simultaneous Equation Models.ppt
- 山东大学:《公共经济学》课程电子教案(共七部分).doc
- 《房地产经济学》第十二章 房地产经济的宏观调控.doc
- 《房地产经济学》第十章 住宅消费与住房制度.doc
- 《房地产经济学》第十一章 房地产业与国民经济.doc
- 《房地产经济学》第八章 房地产投资.doc
- 《房地产经济学》第四章 房地产市场.doc
- 《房地产经济学》第七章 房地产开发.doc
- 《房地产经济学》第五章 房地产价格.doc
- 《房地产经济学》第九章 房地产金融.doc
- 《房地产经济学》第六章 房地产企业.doc
- 《房地产经济学》导论.doc
- 《房地产经济学》第二章 土地与土地使用制度.doc
- 《房地产经济学》第三章 城市地租与土地区位.doc
- 《房地产经济学》导论.doc
- 保险职业学院:《保险学概论》课程教学资源(PPT课件讲稿)习题库.doc
- 保险职业学院:《保险学概论》课程教学资源(PPT课件讲稿)第十二章 社会保险.ppt
- 保险职业学院:《保险学概论》课程教学资源(PPT课件讲稿)第一章 风险与保险.ppt
- 保险职业学院:《保险学概论》课程教学资源(PPT课件讲稿)第七章 再保险.ppt