《计量经济学》课程教学资源(PPT课件讲稿,英文版)Chapter 11 Heteroscedasticity - What Happens if the Error anfurke Variance is Nonconstant

Chapter 11 Heteroscedasticity: What Happens if the Error Variance is Nonconstant ve NITIATI
Chapter 11 Heteroscedasticity: What Happens if the Error Variance is Nonconstant

11.1 The Nature of Heteroscedasticity Homoscedasticity: equal variance Heteroscedasticity: unequal variance HEteroscedasticity is usually found in cross-sectional data VITIA
11.1 The Nature of Heteroscedasticity • Homoscedasticity:equal variance. • Heteroscedasticity:unequal variance. Heteroscedasticity is usually found in cross-sectional data

11.2 Consequences of Heteroscedasticity 1. OLS estimators are still linear 2. They are still unbiased 3. But they no longer have minimunm variance. 4. The usual formulas to estimate the variances of ols estimators are generally biased 5. The bias arises from the fact that o, namely, e2/d is no longer an unbiasedestimator of 02KESaU 6. The usual confidence intervals and hypothesis tests based on t and f distributions are unreliable
11.2 Consequences of Heteroscedasticity • 1. OLS estimators are still linear. • 2. They are still unbiased. • 3. But they no longer have minimunm variance. • 4. The usual formulas to estimate the variances of OLS estimators are generally biased. • 5. The bias arises from the fact that , namely, , is no longer an unbiased estimator of . • 6. The usual confidence intervals and hypothesis tests based on t and F distributions are unreliable. 2 e /d.f. 2 i 2

In short, in the presence of heteroscedasticity, the usual hypothesis-testing routine is not reliable, raising the possibility of drawing misleading conclusions Heteroscedasticity is potentially a serious problem, for it might destroy the whole edifice of the standard, and so routinely used OLS estimation and hypothesis-testing procedure. A
• In short, in the presence of heteroscedasticity, the usual hypothesis-testing routine is not reliable, raising the possibility of drawing misleading conclusions. • Heteroscedasticity is potentially a serious problem, for it might destroy the whole edifice of the standard, and so routinely used, OLS estimation and hypothesis-testing procedure

11.3 Detection of heteroscedasticity How Do We know When There is a Heteroscedasticity Problem? 1. Nature of the Problem In cross-sectional data involving heterogeneous units, heteroscedasticity a may be the rule rather than / the exception NITIATI
11.3 Detection of Heteroscedasticity: How Do We Know When There is a Heteroscedasticity Problem? • 1. Nature of the Problem In cross-sectional data involving heterogeneous units, heteroscedasticity may be the rule rather than the exception

2. Graphical Examination of Residuals These residuals can be plotted against the observation to which they belong or against one or more of the explanatory variables or against y, the estimated emean value of y For example, we can plot erFs the residuals squared, against sales NITIATI
• 2. Graphical Examination of Residuals • These residuals can be plotted against the observation to which they belong or against one or more of the explanatory variables or against , the estimated mean value of . For example, we can plot , the residuals squared, againstsales. i ˆ i ˆ 2 i e

3. Park Test we can regress o 2 on one or more of the X variables ho2=B2+B2nX;+v;(14) Park suggests using ei as proxies for u he2=B2+B2hX;+V1(11.5) A
• 3. Park Test. • we can regress on one or more of the X variables. (11.4) • Park suggests using ei as proxies for ui . (11.5) 2 2 i i 2 i lnσ = B + B lnX + v 2 2 i i 2 i lne = B + B lnX + v 2 σ i

(1)Run the original regression despite the heteroscedasticity problem (2)Obtain the residuals ei, square them, and take their logs 3)Regress ei2 against each X variable. Alternatively, run the regression against yGu, the estimated VITIA . (4)Null hypothesis: B2=0;
• (1) Run the original regression despite the heteroscedasticity problem • (2) Obtain the residuals ei , square them, and take their logs . • (3)Regress ei2 against each X variable. Alternatively, run the regression against , the estimated Y. • (4 )Null hypothesis: B2=0; i ˆ

(5)Serious problem with the Park test, the error term v may itself be heteroscedastic VITIA
• (5) Serious problem with the Park test, the error term vi may itself be heteroscedastic!

4. Glejser Test (Obtaining residuals e, from the original model, (2)Regressing the absolute values of ei, el,on the X variable lei l=B+B2Xi+v (11.7) eil =B+B2x+V (1.8) e|=B1+B2(x)+v(19 (3)Null hypotheses: here is no heteroscedasticity, that is: B2=0 ITIA If this hypothesis is rejected, there is probably evidence of heteroscedasticity
4.Glejser Test (1)Obtaining residuals ei from the original model, (2)Regressing the absolute values of ei , |ei | , on the X variable . |ei | =B1+B2Xi +vi (11.7) |ei | =B1+B2 +vi (11.8) |ei | =B1+B2 +vi (11.9) (3)Null hypotheses: There is no heteroscedasticity, thatis : B2=0. If this hypothesis is rejected, there is probably evidence of heteroscedasticity. X i 1 Xi
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)Chapter 10 Multicollinearity - What Happens if Explanatory Variables are Correlated.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)Chapter 9 Regression on Dummy Explanatory Variables.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)Chapter 8 Functional Forms of Regression Model.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)Chapter 7 Multiple Regression:Estimation and Hypothesis Testing.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)Chapter 6 The Two-Variable Model:Hypothesis Testing.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)Chapter 5 Basic Ideas of Linear Regression:the Two-Variable Model.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)Chapter 4 STATISTICALINFERENCE:ESTIMATION AND HYPOTHESES TESTING.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)Chapter 3 SOME IMPORTANT PROBABILITY DISTRIBUTIONS.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)Chapter 2 A REVIEW OF BASIC STATISTICAL CONCEPTS.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)Chapter 1 THE NATURE AND SCOPE OF ECONOMETRICS.ppt
- 《国际贸易实务》课程教学资源(讲义)第十一章 进口合同的履行.pdf
- 《国际贸易实务》课程教学资源(讲义)第十章 出口合同的履行.pdf
- 《国际贸易实务》课程教学资源(讲义)第九章 国际货物买卖合同的商订.pdf
- 《国际贸易实务》课程教学资源(讲义)商品的检验.pdf
- 《国际贸易实务》课程教学资源(讲义)支付票据.pdf
- 《国际贸易实务》课程教学资源(讲义)进出口价格的确定.pdf
- 《国际贸易实务》课程教学资源(讲义)海洋运输货物保险.pdf
- 《国际贸易实务》课程教学资源(讲义)交货与装运.pdf
- 《国际贸易实务》课程教学资源(讲义)表示商品品质的方法、进出口合同中的品质条款、卖方违反品质条款时的处理.pdf
- 《国际贸易实务》课程教学资源(讲义)贸易术语(Trade Terms Trade Terms).pdf
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)Chapter 12 Autocorrelation - What Happens Error Terms are Correlated.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)Chapter 13 Model Selection - Criteria and Tests.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)Chapter 14 Selected Topics in Single Equation Regression Models.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)Chapter 15 Simultaneous Equation Models.ppt
- 山东大学:《公共经济学》课程电子教案(共七部分).doc
- 《房地产经济学》第十二章 房地产经济的宏观调控.doc
- 《房地产经济学》第十章 住宅消费与住房制度.doc
- 《房地产经济学》第十一章 房地产业与国民经济.doc
- 《房地产经济学》第八章 房地产投资.doc
- 《房地产经济学》第四章 房地产市场.doc
- 《房地产经济学》第七章 房地产开发.doc
- 《房地产经济学》第五章 房地产价格.doc
- 《房地产经济学》第九章 房地产金融.doc
- 《房地产经济学》第六章 房地产企业.doc
- 《房地产经济学》导论.doc
- 《房地产经济学》第二章 土地与土地使用制度.doc
- 《房地产经济学》第三章 城市地租与土地区位.doc
- 《房地产经济学》导论.doc
- 保险职业学院:《保险学概论》课程教学资源(PPT课件讲稿)习题库.doc
- 保险职业学院:《保险学概论》课程教学资源(PPT课件讲稿)第十二章 社会保险.ppt