武汉大学生命科学学院:《分子生物学》英文版 CHAPTER 17 Gene Regulation in Eukaryotes

Chapter 17 Gene Regulation in Eukaryotes
Chapter 17 Gene Regulation in Eukaryotes

Similarity of regulation between eukaryotes and prokaryote 1. Principles are the same signals activators and repressors, recruitment and allostery, cooperative bind ding Expression of a gene can be regulated at the similar steps, and the initiation of transcription is the most pervasively regulated step
Similarity of regulation between eukaryotes and prokaryote 1. Principles are the same: signals, activators and repressors, recruitment and allostery, cooperative binding 2. Expression of a gene can be regulated at the similar steps, and the initiation of transcription is the most pervasively regulated step

Difference in requlation between eukaryotes and prokaryote 1. Pre-mRNA splicing adds an important step for regulation 2. The eukaryotic transcriptional machinery is more elaborate than its bacterial counterpart 3/ Nucleosomes and /their modifiers influence access to genes 4. Many eukaryotic genes have more regulatory binding sites and are controlled by more requlatory proteins than are bacterial genes
Difference in regulation between eukaryotes and prokaryote 1. Pre-mRNA splicing adds an important step for regulation. 2. The eukaryotic transcriptional machinery is more elaborate than its bacterial counterpart. 3. Nucleosomes and their modifiers influence access to genes. 4. Many eukaryotic genes have more regulatory binding sites and are controlled by more regulatory proteins than are bacterial genes

A lot more regulator bindings sites in multicellular organisms reflects the more extensive signal integration regulatory promoter Bacteria sequence Yeast Human Fg。17-1
A lot more regulator bindings sites in multicellular organisms reflects the more extensive signal integration Fig. 17-1 Bacteria Yeast Human

Enhancer: a given site binds regulator responsible for activating the gene Alternative enhancer binds different groups of regulators and control expression of the same gene at different times and laces in responsible to different signals. Activation at a distance is much more common in eukaryotes. Insulators(绝缘体 or boundary elements are regulatory sequences to ensure a linked promoter not responding to the activator binding
Enhancer: a given site binds regulator responsible for activating the gene. Alternative enhancer binds different groups of regulators and control expression of the same gene at different times and places in responsible to different signals. Activation at a distance is much more common in eukaryotes. Insulators (绝缘体) or boundary elements are regulatory sequences to ensure a linked promoter not responding to the activator binding

Topic 1 Conserved mechanisms of Transcriptional Regulation from/ Yeast to Mammals
Topic 1 Conserved Mechanisms of Transcriptional Regulation from Yeast to Mammals

e The basic features of gene regulation are the same in all eukaryotes, because of the similarity in their transcription and nucleosome structure e yeast is the most amenable to both genetic and biochemical dissection, and produces much of knowledge of the action of the eukaryotic repressor and activator . The typical eukaryotic activators works in a manner similar to the simplest bacterial Case e Repressors work in a variety of ways
The basic features of gene regulation are the same in all eukaryotes, because of the similarity in their transcription and nucleosome structure. Yeast is the most amenable to both genetic and biochemical dissection, and produces much of knowledge of the action of the eukaryotic repressor and activator. The typical eukaryotic activators works in a manner similar to the simplest bacterial case. Repressors work in a variety of ways

1-1 Eukaryotic activators have separate dna binding and activating functions, which are ver often on separate domains of the/protein activation domain DNA-binding DNA domain DNA-binding site Fig. 17-2 Gal4 bound to its site on DNA
1-1 Eukaryotic activators have separate DNA binding and activating functions, which are very often on separate domains of the protein. Fig. 17-2 Gal4 bound to its site on DNA

1. Gal4 is the most studied eukaryotic activator 2. Gal4 activates transcription of the galactose genes in the yeast S. cerevisae 3. Gal4 binds to four sites upstream of GAL1 and activates transcription 1000-fold in the presence of galactose 123 4 GAL 1 UASG 275bp Fig. 17-3 The regulatory sequences of the yeast GALl gene
Fig. 17-3 The regulatory sequences of the Yeast GAL1 gene. 1.Gal4 is the most studied eukaryotic activator 2.Gal4 activates transcription of the galactose genes in the yeast S. cerevisae. 3.Gal4 binds to four sites upstream of GAL1, and activates transcription 1,000-fold in the presence of galactose

The separate DNA binding and activating domains of gal4 were revealed in two complementary experiments 1. Expression of the N-terminal region (DNA-binding domain)of the activator produces a protein bound to the dna normally but did not activate transcription 2. Fusion of the c-terminal region (activation domain) of the activator to the dna binding domain of a bacterial repressor LexA activates the transcription of the reporter gene Domain swap experiment
The separate DNA binding and activating domains of Gal4 were revealed in two complementary experiments 1. Expression of the N-terminal region (DNA-binding domain) of the activator produces a protein bound to the DNA normally but did not activate transcription. 2. Fusion of the C-terminal region (activation domain) of the activator to the DNA binding domain of a bacterial repressor, LexA activates the transcription of the reporter gene. Domain swap experiment
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 武汉大学生命科学学院:《分子生物学》英文版 CHAPTER 16 Regulation in prokaryotes.ppt
- 武汉大学生命科学学院:《分子生物学》英文版 CHAPTER 15 The Genetic Code.ppt
- 武汉大学生命科学学院:《分子生物学》英文版 CHAPTER 14 Translation.ppt
- 《转基因植物制作》(英文版) Methods of producing transgenic plants Part l.ppt
- 《动物生物学》课程教学资源:第六节 神经系统.ppt
- 《动物生物学》课程教学资源:第二节 消化系统.ppt
- 《动物生物学》课程教学资源:第七节 动物界(Kingdom of Animal).ppt
- 《动物生物学》课程教学资源:第四节 排泄系统.ppt
- 《动物生物学》课程教学资源:第三节 循环糸统.ppt
- 《动物生物学》课程教学资源:第八节 动物内分泌系统.ppt
- 《生物化学》课程PPT教学课件:第三十九章 细胞代谢与基因表达调控.ppt
- 《生物化学》课程PPT教学课件:第三十八章 蛋白质的合成与转运.ppt
- 《生物化学》课程PPT教学课件:第三十六章 遗传密码.ppt
- 《生物化学》课程PPT教学课件:第三十六章 RNA的生物合成和加工.ppt
- 《生物化学》课程PPT教学课件:第三十五章 DNA的重组与基因工程.ppt
- 《生物化学》课程PPT教学课件:第三十四章 DNA的复制和修复.ppt
- 《生物化学》课程PPT教学课件:第三十三章 核酸的降解和核苷酸代谢.ppt
- 《生物化学》课程PPT教学课件:第三十一、三十二章 氨基酸及其重要衍生物的生物合成.ppt
- 《生物化学》课程PPT教学课件:第三十章 蛋白质的降解和氨基酸的分解代谢.ppt
- 《生物化学》课程PPT教学课件:第二十九章 脂类的生物合成.ppt
- 武汉大学生命科学学院:《分子生物学》英文版 CHAPTER 20 Techniques of Molecular Biology.ppt
- 武汉大学生命科学学院:《分子生物学》英文版 CHAPTER 21 Model Organisms.ppt
- 武汉大学生命科学学院:《分子生物学》英文版 Intro 课程介绍.ppt
- 武汉大学生命科学学院:《分子生物学》英文版 Chapter 6-15 Key points.ppt
- 武汉大学生命科学学院:《分子生物学》英文版 Chapter 1 The Mendelian View of the World.ppt
- 《分子生物学实验》讲义.ppt
- 西华大学:《生物化学》课程教学资源(作业习题)第七章 脂类化学与生物膜试题.doc
- 西华大学:《生物化学》课程教学资源(PPT课件)第六章 酶.ppt
- 西华大学:《生物化学》课程教学资源(作业习题)第九章 糖代谢试题.doc
- 西华大学:《生物化学》课程教学资源(PPT课件)第七章 脂类化学与生物膜.ppt
- 西华大学:《生物化学》课程教学资源(PPT课件)第八章 代谢总论与生物氧化.ppt
- 西华大学:《生物化学》课程教学资源(PPT课件)第九章 糖代谢.ppt
- 西华大学:《生物化学》课程教学资源(PPT课件)第十章 脂类代谢.ppt
- 西华大学:《生物化学》课程教学资源(PPT课件)第十一章 蛋白质降解及氨基酸代谢.ppt
- 西华大学:《生物化学》课程教学资源(PPT课件)第十二章 核酸的降解和核苷酸代谢.ppt
- 西华大学:《生物化学》分子生物学(分子遗传学)中心法则.ppt
- 西华大学:《生物化学》课程教学资源(PPT课件)第十四章 细胞代谢和基因表达的调控.ppt
- 《微生物学》课程教学课件(PPT讲稿)Chapter 9 Microbial taxonomy.ppt
- 《微生物学》课程教学课件(PPT讲稿)chapter 7 metablism1.ppt
- 《微生物学》课程教学课件(PPT讲稿)chapter 8-I genetics mutation.ppt