组合霍奇理论与信息处理(PPT讲稿)Combinatorial Hodge Theory and Information Processing

Combinatorial Hodge Theory and Information Processing l898 姚远 2010.3.25
Combinatorial Hodge Theory and Information Processing 姚 远 2010.3.25

Hodge decomposition a Vector calculus: Helmholtz's decomposition ie. vector fields on nice domains may be resolved into irrotational (curl-free and solenoidal(divergence-free) component vector fields F=-Vy+V×A yp scalar potential, A vector potential a Linear algebra: additive orthogonal decomposition of a skew-symmetric matrix into three skew-symmetric matrices W=W1+W2+W3 W,=ve/-ev, W2 clique-consistent, W3 inconsistent Graph theory: orthogonal decomposition of network flows into acyclic and cyclic components
Hodge Decomposition

Visual Image patches Ann Lee, Kim Pedersen, David Mumford(2003)studies statistical properties of 3x3 high contrast image patches of natural images(from Van Heteran's database) Gunnar Carlsson, Vin de Silva, Tigran Ishkhanov, Afra Zomorodian(2004-present) found those image patches concentrate around a 2-dimensional klein bottle imbedded in 7-sphere They build up simplicial complex from point cloud data 1-D Harmonic flows actually focus on densest region 3 major circles
Visual Image Patches • Ann Lee, Kim Pedersen, David Mumford (2003) studies statistical properties of 3x3 high contrast image patches of natural images (from Van Heteran’s database) • Gunnar Carlsson, Vin de Silva, Tigran Ishkhanov, Afra Zomorodian (2004-present) found those image patches concentrate around a 2-dimensional klein bottle imbedded in 7-sphere • They build up simplicial complex from point cloud data • 1-D Harmonic flows actually focus on densest region -- 3 major circles

1-D Harmonic Flows on the space of3×3 Image Patches 左上图: Klein bottle of 3x3 Image Patch Space(Courtesy of Carlsson-shkhanov circles Prescind on NOnin Lotte 2007 左下图: Harmonic flows focus on 3 major circles where most of data concentrate
1-D Harmonic Flows on the space of 3x3 Image Patches • 左上图:Klein Bottle of 3x3 Image Patch Space (Courtesy of Carlsson-Ishkhanov, 2007) • 左下图:Harmonic flows focus on 3 major circles where most of data concentrate

Ranking Psychology: LL. Thurstone(1928)(scaling) Statistics: M. Kendall(1930s, rank corellation), F Mosteller, Bradley-Terry, .. P. Diaconis(group theory), etc Economics: K Arrow, A Sen(voting and social choice theory, Nobel Laureates Computer Science: Google' s PageRank, HITS, etc We shall focus on ranking in the sequel as the construction of abstract simplicial complex is more natural and easier than point cloud data
Ranking Psychology: L. L. Thurstone (1928) (scaling) Statistics: M. Kendall (1930s, rank corellation), F. Mosteller, Bradley-Terry,…, P. Diaconis (group theory), etc. Economics: K. Arrow, A. Sen (voting and social choice theory, Nobel Laureates) Computer Science: Google’s PageRank, HITS, etc. We shall focus on ranking in the sequel as the construction of abstract simplicial complex is more natural and easier than point cloud data

Had William Hodge met Maurice Kendall Hodge Theory Pairwise ranking google talks The bridge of sighs in Cambridge, St John,'s College
Had William Hodge met Maurice Kendall Hodge Theory Pairwise ranking The Bridge of Sighs in Cambridge, St John’s College

Ranking on Networks Multicriteria ranking/decision systems Amazon or NetfliX s recommendation system(user-product) nterest ranking in social networks(person-interest S&P index( time-price Voting(voter-candidate) Peer-review' systems Publication citation systems(paper-paper) Google's webpage ranking( web-Web eBays reputation system(customer-customer
Ranking on Networks • “Multicriteria” ranking/decision systems – Amazon or Netflix’s recommendation system (user-product) – Interest ranking in social networks (person-interest) – S&P index (time-price) – Voting (voter-candidate) • “Peer-review” systems – Publication citation systems (paper-paper) – Google’s webpage ranking (web-web) – eBay’s reputation system (customer-customer)

Ranking on Networks Multicriteria Peer-Review 无法显示该图片 mv1 mv2 mV3 usr1 1 usr2 25 usr 4 Us4325
Ranking on Networks • Multicriteria mv1 mv2 mv3 usr1 1 - - usr2 2 5 - usr3 - - 4 usr4 3 2 5 • Peer-Review

Characteristics Aforementioned ranking data are often Incomplete: typically about 1% Imbalanced: heterogeneously distributed votes Cardinal: given in terms of scores or stochastic choices Pairwise ranking on graphs: implicitly or explicitly, ranking data may be viewed to live on a simple graph G=(V, E),Where V: set of alternatives(webpages, products, etc. to be ranked E: pairs of alternatives to be compared
Characteristics • Aforementioned ranking data are often – Incomplete: typically about 1% – Imbalanced: heterogeneously distributed votes – Cardinal: given in terms of scores or stochastic choices • Pairwise ranking on graphs: implicitly or explicitly, ranking data may be viewed to live on a simple graph G=(V,E), where – V: set of alternatives (webpages, products, etc.) to be ranked – E: pairs of alternatives to be compared

Pagerank Model assumption 无法显示该图片 A Markov chain random walk on networks, subject to the link structure Algorithm [Brin-Page 98 Choose Link matrix L, where L(i,=# links from i to j Markov matrix M=D-1L where d=e L e is the all-one vector Random Surfer model: e is all-one matrix Page Rank mode: P=CM+(1-c)E/n, where c=0.85 chosen by Google Pagerank vector: the primary eigenvector Vo such that PI Vo= Vo Note: SVD decomposition of L gives HITS [Kleinberg 99] algorithm Problem: Can we drop Markov Chain model assumption?
Pagerank • Model assumption: – A Markov chain random walk on networks, subject to the link structure • Algorithm [Brin-Page’98] – Choose Link matrix L, where L(i,j)=# links from i to j. – Markov matrix M=D-1 L, where D = eT L, e is the all-one vector. – Random Surfer model: E is all-one matrix – PageRank model: P = c M + (1-c) E/n, where c = 0.85 chosen by Google. – Pagerank vector: the primary eigenvector v0 such that PT v0 = v0 Note: SVD decomposition of L gives HITS [Kleinberg’99] algorithm. Problem: Can we drop Markov Chain model assumption?
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《分子生物学》硕士研究生课程考试大纲.doc
- 《基因工程》课程PPT教学课件(讲稿)第二节 重组体导入受体细胞的原理与技术.ppt
- 《普通生物学》课程PPT教学课件(讲稿)生命的化学组成.ppt
- 《植物学》课程教学资源(PPT课件讲稿)第五章 被子植物的繁殖和繁殖器官.ppt
- 山东大学医学院:《生物信息学 Bioinformatics》课程教学资源(PPT课件讲稿)第六章 蛋白质结构预测与分析(蛋白质三级结构、分子表面性质).ppt
- 《实验动物学》课程教学资源(PPT课件讲稿)第三章 实验动物微生物学控制.ppt
- 上海中医药大学:RNA和RNA组学(RNomics)研究进展(PPT课件讲稿).ppt
- 《细胞生物学》课程PPT教学课件(讲稿)细胞培养技术、细胞分子生物学研究方法.ppt
- 《细胞工程》课程教学资源(PPT课件讲稿)第二章 细胞工程基础.ppt
- 《细胞生物学》课程教学资源(PPT课件讲稿)第二章 研究细胞的方法(显微镜技术).ppt
- 《遗传学》课程电子教案(PPT教学课件)第十一章 遗传的分子基础(基因的概念).ppt
- 《植物学》课程PPT教学课件(讲稿)植物的组织、组织系统与维管束类型.ppt
- 中国科学技术大学:《生物大分子波谱学原理》课程教学资源(PPT课件)第二章 核磁共振的理论描述(主讲:吴季辉).ppt
- 《天然药物化学》课程教学资源(PPT课件讲稿)甾体及其苷类 Steroids and glycosides(含习题解答).ppt
- 《生物医学工程导论》课程教学资源(PPT课件讲稿)第五章 人工器官.ppt
- 《分子生物学》课程教学资源(PPT课件讲稿)生物测序技术概述转录组测序.ppt
- 《基因工程》课程PPT教学课件(讲稿)DNA重排的检测方法.ppt
- Neuronal Dynamics 2(PPT课件讲稿)Activation Models.ppt
- 《基因组学》课程PPT教学课件(讲稿)基因组研究 Studying Genome(Genomes, Transcriptomes and Proteomes).ppt
- DNA重排研究进展(PPT讲稿)DNA Rearrangement.ppt
- 野外专业实习(PPT讲稿)早春类短命植物.ppt
- 《细胞生物学》课程PPT教学课件(实验讲稿)实验一 细胞器的光学显微镜观察、实验二 细胞骨架的显示和观察、实验三 细胞形态结构的观察.ppt
- 《动物生物学》课程教学资源(PPT课件讲稿)多细胞动物的胚胎发育、中胚层(mesoderm)和体腔的形成.ppt
- 厦门大学:荧光蛋白的研究进展(PPT讲稿)Deactivation Mechanism of the Green Fluorescent Chromophore.ppt
- 《遗传学》课程教学资源(PPT课件讲稿)第八章 数量性状遗传.ppt
- 《药用植物学》课程教学资源(PPT课件讲稿)植物的组织.ppt
- 《脊椎动物学》课程教学资源(PPT课件讲稿)爬行纲 Reptilia.ppt
- 沈阳农业大学:《生物统计学》课程实验指导(Excel篇).pdf
- 陇东学院:《植物学》课程电子教案(PPT课件讲稿)第二章 菌类(主讲:郭小强).ppt
- 中南民族大学:《药用植物学》课程PPT教学课件(实验讲稿)实验四 叶的外形、内部构造及繁殖器官观察.ppt
- 《环境生物学》课程PPT教学课件(讲稿)第3章污染物的生物效应检测.ppt
- 《细胞生物学》课程教学资源(PPT课件讲稿)第十三章 细胞衰老与凋亡.ppt
- 细胞分裂(cell division)PPT课件讲稿.ppt
- 《细胞生物学》课程教学资源(PPT课件讲稿)第三章 细胞生物学研究方法.ppt
- 暨南大学:《环境微生物学》课程教学资源(PPT课件讲稿)第四章 微生物的遗传与变异.ppt
- 暨南大学:《环境微生物学》课程教学资源(PPT课件讲稿)第三章 微生物的生长与代谢 第三节 微生物的生长繁殖 第四节 环境因素对微生物的影响.ppt
- 暨南大学:《环境微生物学》课程教学资源(PPT课件讲稿)第一章 绪论(主讲:侯森).pptx
- 暨南大学:《环境微生物学》课程教学资源(PPT课件讲稿)第五章 微生物在环境中的分布及其相互关系.ppt
- 暨南大学:《环境微生物学》课程教学资源(PPT课件讲稿)第三章 微生物的生长与代谢 第一节 微生物的营养与营养类型.ppt
- 形态学研究及其方法进展(PPT讲稿,主讲:宋天保).ppt