同济大学:《数值分析》课程教学资源(讲义)第六章 数值积分 Numerical Quadrature

Numerical Quadrature →Introduction ●Riemann Integration .Composite Trapezoid Rule Composite Simpson's Rule ●Gaussian Quadrature Copyright©2011NA⊙Yin 2
Numerical Quadrature ⇒ Introduction • Riemann Integration • Composite Trapezoid Rule • Composite Simpson’s Rule • Gaussian Quadrature Copyright c 2011 NAYin 2

Numerical Quadrature -Interpretation f()>on [a,]boundedf()da is area under f() anjen uonounj b Copyright©2011NA⊙Yin 3
Numerical Quadrature – Interpretation • f(x) > 0 on [a, b] bounded ⇒ R b a f(x)dx is area under f(x) Copyright c 2011 NAYin 3

Motivation Analytical solution-rare rπ/ sin(c)dr=-cosx6/2=-(0-1)=1 ●In general: π/2 (1-a2sin20)1/3d0 o e da Need general numerical technique Copyright 2011 NAOYin 4
Motivation • Analytical solution – rare Z π/2 0 sin(x)dx = − cos x| π/2 0 = −(0 − 1) = 1 • In general: Z π/2 0 (1 − a 2 sin2 θ) 1/3 dθ Z 1 0 e −x 2 dx Need general numerical technique Copyright c 2011 NAYin 4

Definitions ●Mesh:P≡{a=xo<x1<·<xn=b},n subintervals(n+1 points) ●Infima and superma: m=inf{f(c):xa≤x≤x+1} M≡sup{f(x):x≤x≤c+1} Two methods(i.e.,integral estimates):lower and upper sums n1 f,P)=∑m,(1-x) i=0 Copyright©2011NA⊙Yin 5
Definitions • Mesh: P ≡ {a = x0 < x1 < · · · < xn = b}, n subintervals (n + 1 points) • Infima and superma: mi ≡ inf{f(x) : xi ≤ x ≤ xi+1} Mi ≡ sup{f(x) : xi ≤ x ≤ xi+1} • Two methods (i.e., integral estimates): lower and upper sums L(f, P) ≡ n X−1 i=0 mi(xi+1 − xi) Copyright c 2011 NAYin 5

n-1 U(f,P)≡ Mi(xi+1-xi) i=0 ●For example Copyright©2011NA⊙Yin 6
U(f, P) ≡ n X−1 i=0 Mi(xi+1 − xi) • For example Copyright c 2011 NAYin 6

Lower Sum anjen uollunj 9)x1x2r4) Clearly a lower bound of integral estimate,and... Copyright©2011NA⊙Yin 7
Lower Sum Clearly a lower bound of integral estimate, and . . . Copyright c 2011 NAYin 7

Upper Sum anjen uoloun 9x12r4 ..an upper bound.What is the max error? Copyright©2011NA⊙Yin 8
Upper Sum . . . an upper bound. What is the max error? Copyright c 2011 NAYin 8

Example Third method.use lower and upper sums:(L+U)/2 ●f(x)=x2,[a,b=[0,1andP={0,,2,,1} ·L=品,U=2 ·(L+U)/2=是(actual) .naive approach:still error of ●Max error:(U-L)/2= Is this good enough? Copyright©2011NA⊙Yin
Example • Third method. use lower and upper sums: (L + U)/2 • f(x) = x 2 , [a, b] = [0, 1] and P = {0, 1 4 , 1 2 , 3 4 , 1} • L = 7 32, U = 15 32 • (L + U)/2 = 11 32 (actual 1 3 ) • naive approach: still error of 1 96. • Max error: (U − L)/2 = 1 8 Is this good enough? Copyright c 2011 NAYin 9

Rethinking Perhaps lower and upper sums are enough? error seems small work seems small as well But:estimate of max error was not small ( ·Do they converge to integral as n→o? Will the extrema always be easy to calculate?Accurately?(Probably not!) Proceed in theoretical and practical directions. Copyright©2011NA⊙Yin 10
Rethinking • Perhaps lower and upper sums are enough? ∗ error seems small ∗ work seems small as well • But: estimate of max error was not small (1 8 ) • Do they converge to integral as n → ∞? • Will the extrema always be easy to calculate? Accurately? (Probably not!) Proceed in theoretical and practical directions. Copyright c 2011 NAYin 10

Numerical Quadrature ·Introduction →Riemann Integration Composite Trapezoid Rule Composite Simpson's Rule ●Gaussian Quadrature Copyright©2011NA⊙Yin 11
Numerical Quadrature • Introduction ⇒ Riemann Integration • Composite Trapezoid Rule • Composite Simpson’s Rule • Gaussian Quadrature Copyright c 2011 NAYin 11
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 同济大学:《数值分析》课程教学资源(讲义)第五章 插值和拟合 Approximation by Splines.pdf
- 同济大学:《数值分析》课程教学资源(讲义)第四章 特征值的计算方法 Algorithm for Computing Eigenvalue and Eigenvector.pdf
- 同济大学:《数值分析》课程教学资源(讲义)第三章 迭代法 Iterative Method for the Solution of Linear Equations.pdf
- 同济大学:《数值分析》课程教学资源(讲义)第二章 直接法 Direct Method for the Solution of Linear Equations.pdf
- 同济大学:《数值分析》课程教学资源(讲义)第一章 非线性方程求根 Nonlinear Equations(负责人:殷俊锋).pdf
- 《微分几何》课程教学资源(学习笔记)微分几何H课堂笔记.pdf
- 中国科学技术大学:《运筹学》课程教学资源(教案讲义)运筹学讲义、最优化讲义.pdf
- 《数学分析》课程教学资源(学习笔记)数学分析A1课堂笔记.pdf
- 《数学分析》课程教学资源(学习笔记)数学分析A2题纲.pdf
- 华罗庚研讨课(学习笔记)A Deep-Learning Based Semi-Interactive Method for Re-colorization.pdf
- 《数学分析》课程教学资源(学习笔记)数学分析A3课堂笔记.pdf
- 中国科学技术大学:《线性代数》课程教学资源(讲义)线性代数(A)课程讲义(主讲:王新茂).pdf
- 《概率论》课程教学资源(学习笔记)概率论笔记.pdf
- 《数值代数》课程教学资源(学习笔记)数值代数习题解答.pdf
- 数学建模(学习笔记)一种基于对流扩散方程的有风烟尘扩散数值模拟方法.pdf
- 长沙理工大学:《高等代数与解析几何》课程教学资源(教案)第十章 双线性函数与辛空间.pdf
- 长沙理工大学:《高等代数与解析几何》课程教学资源(教案)第九章 欧几里得空间.pdf
- 长沙理工大学:《高等代数与解析几何》课程教学资源(教案)第八章 lambda矩阵.pdf
- 长沙理工大学:《高等代数与解析几何》课程教学资源(教案)第七章 线性变换.pdf
- 长沙理工大学:《高等代数与解析几何》课程教学资源(教案)第六章 线性空间.pdf
- 同济大学:《复变函数和积分变换》课程教学资源(试卷习题)习题修订及答案.pdf
- 《复变函数和积分变换》课程教学资源(参考教材)Edward B. Saff, Arthur David Snider Fundamentals of complex analysis, with applications 2003(英文电子版)Complex Analysis.pdf
- 同济大学:《复变函数和积分变换》课程教学资源(试卷习题)复变函数与积分变换(全英语)期末试卷(A卷)14-15(1)试卷.docx
- 同济大学:《复变函数和积分变换》课程教学资源(试卷习题)复变函数与积分变换(全英语)期末试卷(A卷)14-15(1)答案及评分标准.pdf
- 同济大学:《复变函数和积分变换》课程教学资源(试卷习题)复变函数与积分变换(全英语)期末试卷(A卷)15-16(1)试卷.docx
- 同济大学:《复变函数和积分变换》课程教学资源(试卷习题)复变函数与积分变换(全英语)期末试卷(A卷)15-16(1)答案及评分标准.pdf
- 同济大学:《复变函数和积分变换》课程教学资源(试卷习题)复变函数与积分变换(全英语)期末试卷(A卷)16-17(1)试卷.docx
- 同济大学:《复变函数和积分变换》课程教学资源(试卷习题)复变函数与积分变换(全英语)期末试卷(A卷)17-18(1)试卷.docx
- 同济大学:《复变函数和积分变换》课程教学资源(试卷习题)复变函数与积分变换(全英语)期末试卷(A卷)17-18(1)答案及评分标准.pdf
- 同济大学:《复变函数和积分变换》课程教学资源(试卷习题)复变函数与积分变换(全英语)期末试卷(A卷)18-19(1)试卷.docx
- 同济大学:《复变函数和积分变换》课程教学资源(试卷习题)复变函数与积分变换(全英语)期末试卷(A卷)18-19(1)答案及评分标准.pdf
- 同济大学:《复变函数和积分变换》课程教学资源(试卷习题)复变函数与积分变换(全英语)期末试卷(A卷)16-17(1)答案及评分标准.pdf
- 同济大学:《复变函数和积分变换》课程教学资源(PPT课件讲稿)1-1-复数及其四则运算.pptx
- 同济大学:《复变函数和积分变换》课程教学资源(PPT课件讲稿)1-2-复数的几何表示.pptx
- 同济大学:《复变函数和积分变换》课程教学资源(PPT课件讲稿)1-3-复平面上的点集.pptx
- 同济大学:《复变函数和积分变换》课程教学资源(PPT课件讲稿)2-1-极限和连续.pptx
- 同济大学:《复变函数和积分变换》课程教学资源(PPT课件讲稿)2-2-复导数.pptx
- 同济大学:《复变函数和积分变换》课程教学资源(PPT课件讲稿)2-3-初等函数.pptx
- 同济大学:《复变函数和积分变换》课程教学资源(PPT课件讲稿)2-4-复积分.pptx
- 同济大学:《复变函数和积分变换》课程教学资源(PPT课件讲稿)2-5-Cauchy型积分公式.pptx