华南理工大学电子与信息学院:《数字信号与处理》(英文版)Lecture 12 Linear-Phase fr Transfer Functions

Linear-Phase fr Transfer Functions It is nearly impossible to design a linear phase iir transfer function It is al ways possible to design an Fir transfer function with an exact linear-phase response Consider a causal Fir transfer function H(z) of length N+, 1. e, of order N H()=∑20小n=n Copyright C 2001, S K. Mitra
Copyright © 2001, S. K. Mitra 1 Linear-Phase FIR Transfer Functions • It is nearly impossible to design a linearphase IIR transfer function • It is always possible to design an FIR transfer function with an exact linear-phase response • Consider a causal FIR transfer function H(z) of length N+1, i.e., of order N: = − = N n n H z h n z 0 ( ) [ ]

Linear-Phase fr Transfer Functions The above transfer function has a linear phase, if its impulse response hn] is either symmetric, 1.e h{n]=h{N-n],0≤n≤N or is antisymmetric, 1.e h{]=-h[N-nl20≤n≤N Copyright C 2001, S K. Mitra
Copyright © 2001, S. K. Mitra 2 Linear-Phase FIR Transfer Functions • The above transfer function has a linear phase, if its impulse response h[n] is either symmetric, i.e., or is antisymmetric, i.e., h[n] = h[N − n], 0 n N h[n] = −h[N − n], 0 n N

Linear-Phase fr Transfer Functions Since the length of the impulse response can be either even or odd, we can define four types oflinear phase FIR transfer functions For an antisymmetric fir filter of odd length, i.e. Neven h[N2]=0 We examine next the each of the 4 cases Copyright C 2001, S K. Mitra
Copyright © 2001, S. K. Mitra 3 Linear-Phase FIR Transfer Functions • Since the length of the impulse response can be either even or odd, we can define four types of linear-phase FIR transfer functions • For an antisymmetric FIR filter of odd length, i.e., N even h[N/2] = 0 • We examine next the each of the 4 cases

Linear-Phase FIR Transfer Functions hInI n 013:4578 3:4 Center of Center of symmetry symmetry Type 1: N=8 Type 2: N=7 h[n] hn] 6 6 Center of Center of symmetr ry symmetty Type 3: N=& Type 4: N=7 Copyright C 2001, S K Mitra
Copyright © 2001, S. K. Mitra 4 Linear-Phase FIR Transfer Functions Type 1: N = 8 Type 2: N = 7 Type 3: N = 8 Type 4: N = 7

Linear-Phase fr Transfer Functions Type 1: Symmetric Impulse response with Odd length In this case the degree n is even Assume n=8 for simplicity The transfer function H()is given by H(二)=0]+hu]-1+h212+3]z3 +44+h5]5+66+h7=-7+h8]8 Copyright C 2001, S K. Mitra
Copyright © 2001, S. K. Mitra 5 Linear-Phase FIR Transfer Functions Type 1: Symmetric Impulse Response with Odd Length • In this case, the degree N is even • Assume N = 8 for simplicity • The transfer function H(z) is given by 1 2 3 H z h h z h z h z ( ) [0] [1] [2] [3] − − − = + + + 4 5 6 7 8 4 5 6 7 8 − − − − − + h[ ]z + h[ ]z + h[ ]z + h[ ]z + h[ ]z

Linear-Phase fr Transfer Functions Because of symmetry, we have ho]=h 8 h1]=h[7],h[2]=h6],andh[3]=h[5 Thus we can write H()=h0(+23)+1(x+z7) +2(2+6)+h33+25)+4-4 =z4{h0(=4+24)+h](=3+x3) +h2](z2+2-2)+h3](z+2-)+h4]} Copyright C 2001, S K. Mitra
Copyright © 2001, S. K. Mitra 6 Linear-Phase FIR Transfer Functions • Because of symmetry, we have h[0] = h[8], h[1] = h[7], h[2] = h[6], and h[3] = h[5] • Thus, we can write 8 1 7 H z h z h z z ( ) [0](1 ) [1]( ) − − − = + + + 2 6 3 5 4 2 3 4 − − − − − + h[ ](z + z ) + h[ ](z + z ) + h[ ]z { [ ]( ) [ ]( ) 4 4 4 3 3 0 1 − − − = z h z + z + h z + z [2]( ) [3]( ) [4]} 2 2 1 + h z + z + h z + z + h − −

Linear-Phase fr Transfer Functions The corresponding frequency response is then given by H(e/0)=e40(2h[0]cos(40)+2h[]cos(30) +2{2]cos(20)+2h[3]cos(0)+h4]} The quantity inside the braces is a real function of @, and can assume positive or negative values in the range0≤o)≤π Copyright C 2001, S K. Mitra
Copyright © 2001, S. K. Mitra 7 Linear-Phase FIR Transfer Functions • The corresponding frequency response is then given by • The quantity inside the braces is a real function of w, and can assume positive or negative values in the range 0 w ( ) {2 [0]cos(4 ) 2 [1]cos(3 ) 4 = w + w w − w H e e h h j j + 2h[2]cos(2w) + 2h[3]cos(w) + h[4]}

Linear-Phase fr Transfer Functions The phase function here is given by 6(0)=-40+β Whereβ is either0orπ, and hence, It is a linear function of o in the generalized sense The group delay is given by dO(0) τ0 4 indicating a constant group delay of 4 samples Copyright C 2001, S K. Mitra
Copyright © 2001, S. K. Mitra 8 Linear-Phase FIR Transfer Functions • The phase function here is given by where b is either 0 or , and hence, it is a linear function of w in the generalized sense • The group delay is given by indicating a constant group delay of 4 samples (w) = −4w+b ( ) 4 ( ) w = − = w w d d

Linear-Phase fr Transfer Functions In the general case for Type 1 FiR filters the frequency response is of the form H(e/0)=e JNo/2 H(0) where the amplitude response H(o), also called the zero-phase response, is of the orm N/2 H(0)=]+2∑2-nlos(on) Copyright C 2001, S K. Mitra
Copyright © 2001, S. K. Mitra 9 Linear-Phase FIR Transfer Functions • In the general case for Type 1 FIR filters, the frequency response is of the form where the amplitude response , also called the zero-phase response, is of the form ( ) ( ) / 2 = w w − w H e e H j jN ~ H (w) ~ H (w) ~ = + − w = / 2 1 2 2 [ ] 2 [ ]cos( ) N n N N h h n n

Linear-Phase FR Transfer Functions Example- Consider 0(-)= 2 3,-4 5 z+2+2+2+2ˇ+12 2 which is seen to be a slightly modified version of a length-7 moving-average FIR filter The above transfer function has a symmetric impulse response and therefore a linear phase response Copyright C 2001, S K. Mitra
Copyright © 2001, S. K. Mitra 10 Linear-Phase FIR Transfer Functions • Example - Consider which is seen to be a slightly modified version of a length-7 moving-average FIR filter • The above transfer function has a symmetric impulse response and therefore a linear phase response ( ) [ ] 6 2 1 2 3 4 5 1 2 1 6 1 0 − − − − − − H z = + z + z + z + z + z + z
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 华南理工大学电子与信息学院:《数字信号与处理》(英文版)Lecture 11 Stability Condition in Terms of the pole locations.ppt
- 华南理工大学电子与信息学院:《数字信号与处理》(英文版)Lecture 10 Phase and Group Delays.ppt
- 华南理工大学电子与信息学院:《数字信号与处理》(英文版)Lecture 9 LTI Discrete-Time Systems in the Transform domain.ppt
- 华南理工大学电子与信息学院:《数字信号与处理》(英文版)Lecture 8 z-Transform.ppt
- 华南理工大学电子与信息学院:《数字信号与处理》(英文版)Lecture 7 DTFT Properties.ppt
- 华南理工大学电子与信息学院:《数字信号与处理》(英文版)Lecture 6 Transform-Domain Representation of Discrete-Time Signals.ppt
- 华南理工大学电子与信息学院:《数字信号与处理》(英文版)Lecture 5 Stability Condition of a Discrete-Time LTI System.ppt
- 华南理工大学电子与信息学院:《数字信号与处理》(英文版)Lecture 4 Discrete-Time Systems.ppt
- 华南理工大学电子与信息学院:《数字信号与处理》(英文版)Lecture 3 Discrete-Time Signals Time-Domain Representation.ppt
- 华南理工大学电子与信息学院:《数字信号与处理》(英文版)Lecture 1 Instructor.ppt
- 华南理工大学电子与信息学院:《数字信号与处理》第七章 数字滤波器设计.ppt
- 华南理工大学电子与信息学院:《数字信号与处理》第六章 数字滤波器的结构.ppt
- 华南理工大学电子与信息学院:《数字信号与处理》第五章 连续时间信号的数字处理.ppt
- 华南理工大学电子与信息学院:《数字信号与处理》第四章 LTI离散时间系统在变换域中的分析.ppt
- 华南理工大学电子与信息学院:《数字信号与处理》第三章 变换域中的离散时间信号.ppt
- 华南理工大学电子与信息学院:《数字信号与处理》第二章 离散时间信号与系统的时域分析.ppt
- 华南理工大学电子与信息学院:《数字信号与处理》第一章 数字信号处理.ppt
- 《计算机辅助设计AutoCAD》教学资源(PPT课件)第9章 协同设计.ppt
- 《计算机辅助设计AutoCAD》教学资源(PPT课件)第8章 块及属性块.ppt
- 《计算机辅助设计AutoCAD》教学资源(PPT课件)第7章 尺寸标注.ppt
- 华南理工大学电子与信息学院:《数字信号与处理》(英文版)Lecture 13 Simple Digital Filters.ppt
- 华南理工大学电子与信息学院:《数字信号与处理》(英文版)Lecture 14 Comb Filters.ppt
- 《聚合物物理学》第一单元 聚合物化学结构.ppt
- 《聚合物物理学》第二单元 高分子热力学.ppt
- 《聚合物物理学》第三单元 聚合物运动学.ppt
- 《聚合物物理学》第四单元 聚合物有序结构.ppt
- 《聚合物物理学》第五单元 极限力学性能.ppt
- 《聚合物物理学》教学计划.doc
- 《聚合物物理学》电子课件(共五单元).doc
- 《雅思英语词汇》讲义.doc
- 国防科技大学人文与管理学院:《管理经济学》第四讲 生产理论与生产决策分析(孙多勇).ppt
- 国防科技大学人文与管理学院:《管理经济学》第五讲 成本利润分析(孙多勇).ppt
- 国防科技大学人文与管理学院:《管理经济学》第一讲 概述(孙多勇).ppt
- 国防科技大学人文与管理学院:《管理经济学》第二讲 需求、供给与市场均衡(孙多勇).ppt
- 国防科技大学人文与管理学院:《管理经济学》第六讲 市场结构与市场竞争(孙多勇).ppt
- 国防科技大学人文与管理学院:《管理经济学》第三讲 消费者行为与需求理论(孙多勇).ppt
- 《地震百问》PDF电子书.pdf
- 《物流案例》案例 30 沃尔玛、戴尔:世界主流商业模式典范研究解析.doc
- 《物流案例》案例 1:德国铁老大的物流演义.doc
- 《物流案例》案例2 海尔以流程改造构建竞争优势.doc