华南理工大学电子与信息学院:《数字信号与处理》(英文版)Lecture 10 Phase and Group Delays

Phase and Group Delays The output yn]of a frequency-selective LTI discrete-time system with a frequency response H(e/o)exhibits some delay relative to the input x[n caused by the nonzero phase response 0(a)=argh(eJo) of the system · For an input xn]=Acos(00n+中),-∞<n<0 Copyright C 2001, S K. Mitra
Copyright © 2001, S. K. Mitra 1 Phase and Group Delays • The output y[n] of a frequency-selective LTI discrete-time system with a frequency response exhibits some delay relative to the input x[n] caused by the nonzero phase response of the system • For an input ( ) j H e ( ) arg{ ( )} = j H e x[n] = Acos(on + ), − n

Phase and Group Delays the output is y=AH(e0)co0n+00,)+) Thus, the output lags in phase by 8(Oo) radians Rewriting the above equation we get 0() y[n]=AH(eJ0o )cosmo n+0+d O Copyright C 2001, S K. Mitra
Copyright © 2001, S. K. Mitra 2 Phase and Group Delays the output is • Thus, the output lags in phase by radians • Rewriting the above equation we get [ ] = ( ) cos( + ( ) + ) o o j y n AH e o n ( ) o + = + o o o j y n AH e o n ( ) [ ] ( ) cos

Phase and Group Delays This expression indicates a time delay. known as phase delay, at o=@o given by τ(0l)= 0(Oo) Now consider the case when the input Signal contains many sinusoidal components with different frequencies that are not harmonically related Copyright C 2001, S K. Mitra
Copyright © 2001, S. K. Mitra 3 Phase and Group Delays • This expression indicates a time delay, known as phase delay, at given by • Now consider the case when the input signal contains many sinusoidal components with different frequencies that are not harmonically related = o o o p o = − ( ) ( )

Phase and Group Delays n this case, each component of the input will go through different phase delays when processed by a frequency-selective LTI discrete-time system Then, the output signal, in general, will not look like the Inp ut signal The signal delay now is defined using a different parameter Copyright C 2001, S K. Mitra
Copyright © 2001, S. K. Mitra 4 Phase and Group Delays • In this case, each component of the input will go through different phase delays when processed by a frequency-selective LTI discrete-time system • Then, the output signal, in general, will not look like the input signal • The signal delay now is defined using a different parameter

Phase and Group Delays To develop the necessary expression consider a discrete-time signal xn obtained by a double-sideband suppressed carrier DSB-SC) modulation with a carrier frequency o of a low-frequency sinusoidal signal of frequency @o x[n=acos(oon cos(ocn) Copyright C 2001, S K. Mitra
Copyright © 2001, S. K. Mitra 5 Phase and Group Delays • To develop the necessary expression, consider a discrete-time signal x[n] obtained by a double-sideband suppressed carrier (DSB-SC) modulation with a carrier frequency of a low-frequency sinusoidal signal of frequency : o c x[n] Acos( n)cos( n) = o c

Phase and Group Delays The input can be rewritten as xn=a cos(oen)+a cos(oun) where oe=oc-oo and Qu=oc+Oo Let the above input be processed by an lti discrete-time system with a frequency response H(e/o)satisfying the condition H(e0)=1 for oe≤0≤02 Copyright C 2001, S K. Mitra
Copyright © 2001, S. K. Mitra 6 Phase and Group Delays • The input can be rewritten as where and • Let the above input be processed by an LTI discrete-time system with a frequency response satisfying the condition [ ] cos( ) cos( ) 2 2 x n n un A A = + = c −o u = c +o ( ) j H e u j H e ( ) 1 for

Phase and Group Delays The output yn]is then given by V[n]=A cos(oen+0(oD))+ cos(o,n+O(Ou)) Acos on+ e(o4)+6(0 0(04)-((0c coS Oon+ 2 Note: The output is also in the form of a modulated carrier signal with the same carrier frequency @c and the same modulation frequency @o as the input Copyright C 2001, S K. Mitra
Copyright © 2001, S. K. Mitra 7 Phase and Group Delays • The output y[n] is then given by • Note: The output is also in the form of a modulated carrier signal with the same carrier frequency and the same modulation frequency as the input [ ] cos( ( )) cos( ( )) 2 2 u u A A y n = n + + n + − + + = + 2 ( ) ( ) cos 2 ( ) ( ) cos u o u A cn n c o

Phase and Group Delays However, the two components have ditterent phase lags relative to their corresponding components in the input Now consider the case when the modulated input is a narrowband signal with the frequencies o and o, very close to the carrier frequency o.i. e o, is very small Copyright C 2001, S K. Mitra
Copyright © 2001, S. K. Mitra 8 Phase and Group Delays • However, the two components have different phase lags relative to their corresponding components in the input • Now consider the case when the modulated input is a narrowband signal with the frequencies and very close to the carrier frequency , i.e. is very small u c o

Phase and Group Delays In the neighborhood of o. we can express the unwrapped phase response ec(o)as d0(0) 0(0)=0(0c)+ 0=0 by making a taylor's series expansion and keeping only the first two terms Using the above formula we now evaluate the time delays of the carrier and the modulating components Copyright C 2001, S K. Mitra
Copyright © 2001, S. K. Mitra 9 Phase and Group Delays • In the neighborhood of we can express the unwrapped phase response as by making a Taylor’s series expansion and keeping only the first two terms • Using the above formula we now evaluate the time delays of the carrier and the modulating componentsc () c ( ) ( ) ( ) ( ) c c c c c c d d − + =

Phase and Group Delays In the case of the carrier signal we have 0(01)+0(0)0(0) 2c which is seen to be the same as the phase delay if only the carrier signal is passed through the system Copyright C 2001, S K. Mitra
Copyright © 2001, S. K. Mitra 10 Phase and Group Delays • In the case of the carrier signal we have which is seen to be the same as the phase delay if only the carrier signal is passed through the system c c c c c u c − + − ( ) 2 ( ) ( )
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 华南理工大学电子与信息学院:《数字信号与处理》(英文版)Lecture 9 LTI Discrete-Time Systems in the Transform domain.ppt
- 华南理工大学电子与信息学院:《数字信号与处理》(英文版)Lecture 8 z-Transform.ppt
- 华南理工大学电子与信息学院:《数字信号与处理》(英文版)Lecture 7 DTFT Properties.ppt
- 华南理工大学电子与信息学院:《数字信号与处理》(英文版)Lecture 6 Transform-Domain Representation of Discrete-Time Signals.ppt
- 华南理工大学电子与信息学院:《数字信号与处理》(英文版)Lecture 5 Stability Condition of a Discrete-Time LTI System.ppt
- 华南理工大学电子与信息学院:《数字信号与处理》(英文版)Lecture 4 Discrete-Time Systems.ppt
- 华南理工大学电子与信息学院:《数字信号与处理》(英文版)Lecture 3 Discrete-Time Signals Time-Domain Representation.ppt
- 华南理工大学电子与信息学院:《数字信号与处理》(英文版)Lecture 1 Instructor.ppt
- 华南理工大学电子与信息学院:《数字信号与处理》第七章 数字滤波器设计.ppt
- 华南理工大学电子与信息学院:《数字信号与处理》第六章 数字滤波器的结构.ppt
- 华南理工大学电子与信息学院:《数字信号与处理》第五章 连续时间信号的数字处理.ppt
- 华南理工大学电子与信息学院:《数字信号与处理》第四章 LTI离散时间系统在变换域中的分析.ppt
- 华南理工大学电子与信息学院:《数字信号与处理》第三章 变换域中的离散时间信号.ppt
- 华南理工大学电子与信息学院:《数字信号与处理》第二章 离散时间信号与系统的时域分析.ppt
- 华南理工大学电子与信息学院:《数字信号与处理》第一章 数字信号处理.ppt
- 《计算机辅助设计AutoCAD》教学资源(PPT课件)第9章 协同设计.ppt
- 《计算机辅助设计AutoCAD》教学资源(PPT课件)第8章 块及属性块.ppt
- 《计算机辅助设计AutoCAD》教学资源(PPT课件)第7章 尺寸标注.ppt
- 《计算机辅助设计AutoCAD》教学资源(PPT课件)第6章 文字标注.ppt
- 《计算机辅助设计AutoCAD》教学资源(PPT课件)第5章 编辑图形.ppt
- 华南理工大学电子与信息学院:《数字信号与处理》(英文版)Lecture 11 Stability Condition in Terms of the pole locations.ppt
- 华南理工大学电子与信息学院:《数字信号与处理》(英文版)Lecture 12 Linear-Phase fr Transfer Functions.ppt
- 华南理工大学电子与信息学院:《数字信号与处理》(英文版)Lecture 13 Simple Digital Filters.ppt
- 华南理工大学电子与信息学院:《数字信号与处理》(英文版)Lecture 14 Comb Filters.ppt
- 《聚合物物理学》第一单元 聚合物化学结构.ppt
- 《聚合物物理学》第二单元 高分子热力学.ppt
- 《聚合物物理学》第三单元 聚合物运动学.ppt
- 《聚合物物理学》第四单元 聚合物有序结构.ppt
- 《聚合物物理学》第五单元 极限力学性能.ppt
- 《聚合物物理学》教学计划.doc
- 《聚合物物理学》电子课件(共五单元).doc
- 《雅思英语词汇》讲义.doc
- 国防科技大学人文与管理学院:《管理经济学》第四讲 生产理论与生产决策分析(孙多勇).ppt
- 国防科技大学人文与管理学院:《管理经济学》第五讲 成本利润分析(孙多勇).ppt
- 国防科技大学人文与管理学院:《管理经济学》第一讲 概述(孙多勇).ppt
- 国防科技大学人文与管理学院:《管理经济学》第二讲 需求、供给与市场均衡(孙多勇).ppt
- 国防科技大学人文与管理学院:《管理经济学》第六讲 市场结构与市场竞争(孙多勇).ppt
- 国防科技大学人文与管理学院:《管理经济学》第三讲 消费者行为与需求理论(孙多勇).ppt
- 《地震百问》PDF电子书.pdf
- 《物流案例》案例 30 沃尔玛、戴尔:世界主流商业模式典范研究解析.doc