华南理工大学电子与信息学院:《数字信号与处理》(英文版)Lecture 8 z-Transform

z-Transform The dtft provides a frequency-domain representation of discrete-time signals and lti discrete-time systems Because of the convergence condition, in many cases. the dtft of a sequence may not exist as a result. it is not possible to make use of such frequency-domain characterization in these cases Copyright C 2001, S K. Mitra
Copyright © 2001, S. K. Mitra 1 z-Transform • The DTFT provides a frequency-domain representation of discrete-time signals and LTI discrete-time systems • Because of the convergence condition, in many cases, the DTFT of a sequence may not exist • As a result, it is not possible to make use of such frequency-domain characterization in these cases

z-Transform a generalization of the dtft defined by (e)=∑x on nle n=-00 leads to the z-transform z-transform may exist for many sequences for which the dtft does not exist Moreover, use of z-transform techniques permits simple algebraic manipulations Copyright C 2001, S K. Mitra
Copyright © 2001, S. K. Mitra 2 z-Transform • A generalization of the DTFT defined by leads to the z-transform • z-transform may exist for many sequences for which the DTFT does not exist • Moreover, use of z-transform techniques permits simple algebraic manipulations = =− − n j j n X (e ) x[n]e

z-Transform Consequently z-transform has become an important tool in the analysis and design of digital filters For a given sequence gln], its z-transform G(z)is defined as G()=∑gn]zn n=-0 Where z=Re(二)+jlm(二)∈ C is a complex variable Copyright C 2001, S K. Mitra
Copyright © 2001, S. K. Mitra 3 z-Transform • Consequently, z-transform has become an important tool in the analysis and design of digital filters • For a given sequence g[n], its z-transform G(z) is defined as where is a complex variable =− − = n n G(z) g[n]z z z j z = + Re( ) Im( )

z-Transform If we let z=re/o. then the z-transform reduces to G(re0)=∑g[ n]"e The above can be interpreted as the dtFt of the modified sequence gn]r Forr=l(i.e,z=1), z-transform reduces to its dtFT, provided the latter exists 4 Copyright C 2001, S K. Mitra
Copyright © 2001, S. K. Mitra 4 z-Transform • If we let , then the z-transform reduces to • The above can be interpreted as the DTFT of the modified sequence • For r = 1 (i.e., |z| = 1), z-transform reduces to its DTFT, provided the latter exists = j z r e = =− − − n j n j n G(r e ) g[n]r e { [ ] } n g n r −

z-Transform The contour z=l is a circle in the z-plane of unity radius and is called the unit circle Like the dtft. there are conditions on the convergence of the infinite series ∑8团m]zn n=-00 For a given sequence, the set r of values of z for which its z-transform converges is called the region of convergence ROC Copyright C 2001, S K. Mitra
Copyright © 2001, S. K. Mitra 5 z-Transform • The contour |z| = 1 is a circle in the z-plane of unity radius and is called the unit circle • Like the DTFT, there are conditions on the convergence of the infinite series • For a given sequence, the set R of values of z for which its z-transform converges is called the region of convergence (ROC) =− − n n g[n]z

z-Transform From our earlier discussion on the uniform convergence of the DTFT, it follows that the series G(re0)=∑g noyon nre 1=-00 converges ifigin]r"is absolutely summable, 1.e < =-0 Copyright C 2001, S K. Mitra
Copyright © 2001, S. K. Mitra 6 z-Transform • From our earlier discussion on the uniform convergence of the DTFT, it follows that the series converges if is absolutely summable, i.e., if = =− − − n j n j n G(r e ) g[n]r e { [ ] } n g n r − =− − n n g[n]r

z-Transform In general, the roc of a z-transform of a sequence gIn is an annular region of the z ane <z<R+ Where0≤Ro<Ro+≤∞ ROC Copyright C 2001, S K. Mitra
Copyright © 2001, S. K. Mitra 7 z-Transform • In general, the ROC of a z-transform of a sequence g[n] is an annular region of the zplane: where − + Rg z Rg 0 Rg − Rg + ROC Rg − Rg +

Cauchy-Laurent Series The z-transform is a form of the Cauchy Laurent series and is an analytic function at every point in the roc Let f(a) denote an analytic(or holomorphic function over an annular region Q centered at z Im(=) Re(=) Copyright C 2001, S K Mitra
Copyright © 2001, S. K. Mitra 8 • The z-transform is a form of the CauchyLaurent series and is an analytic function at every point in the ROC • Let f (z) denote an analytic (or holomorphic) function over an annular region centered at Cauchy-Laurent Series o z Re( )z Im( )z o z

Cauchy-Laurent Series Then f()can be expressed as the bilateral series n=-00 where 2丌 ∮(=)(=-=0)m r being a closed and counterclockwise integration contour contained in Q Copyright C 2001, S K. Mitra
Copyright © 2001, S. K. Mitra 9 • Then f (z) can be expressed as the bilateral series being a closed and counterclockwise integration contour contained in Cauchy-Laurent Series ( 1) ( ) ( ) 1 ( )( ) 2 n n o n n n o f z z z f z z z dz j =− − + = − = − where

z-Transform Example -Determine the z-transform X(z) of the causal sequence xn]=a"[n] and its ROC NoWX(z)=∑am]zn=∑a" n=0 The above power series converges to X(=)= 1-0-1, for aza Copyright C 2001, S K Mitra
Copyright © 2001, S. K. Mitra 10 z-Transform • Example - Determine the z-transform X(z) of the causal sequence and its ROC • Now • The above power series converges to • ROC is the annular region |z| > || x[n] [n] n = = = = − =− − 0 ( ) [ ] n n n n n n X z n z z , for 1 1 1 ( ) 1 1 − = − − z z X z
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 华南理工大学电子与信息学院:《数字信号与处理》(英文版)Lecture 7 DTFT Properties.ppt
- 华南理工大学电子与信息学院:《数字信号与处理》(英文版)Lecture 6 Transform-Domain Representation of Discrete-Time Signals.ppt
- 华南理工大学电子与信息学院:《数字信号与处理》(英文版)Lecture 5 Stability Condition of a Discrete-Time LTI System.ppt
- 华南理工大学电子与信息学院:《数字信号与处理》(英文版)Lecture 4 Discrete-Time Systems.ppt
- 华南理工大学电子与信息学院:《数字信号与处理》(英文版)Lecture 3 Discrete-Time Signals Time-Domain Representation.ppt
- 华南理工大学电子与信息学院:《数字信号与处理》(英文版)Lecture 1 Instructor.ppt
- 华南理工大学电子与信息学院:《数字信号与处理》第七章 数字滤波器设计.ppt
- 华南理工大学电子与信息学院:《数字信号与处理》第六章 数字滤波器的结构.ppt
- 华南理工大学电子与信息学院:《数字信号与处理》第五章 连续时间信号的数字处理.ppt
- 华南理工大学电子与信息学院:《数字信号与处理》第四章 LTI离散时间系统在变换域中的分析.ppt
- 华南理工大学电子与信息学院:《数字信号与处理》第三章 变换域中的离散时间信号.ppt
- 华南理工大学电子与信息学院:《数字信号与处理》第二章 离散时间信号与系统的时域分析.ppt
- 华南理工大学电子与信息学院:《数字信号与处理》第一章 数字信号处理.ppt
- 《计算机辅助设计AutoCAD》教学资源(PPT课件)第9章 协同设计.ppt
- 《计算机辅助设计AutoCAD》教学资源(PPT课件)第8章 块及属性块.ppt
- 《计算机辅助设计AutoCAD》教学资源(PPT课件)第7章 尺寸标注.ppt
- 《计算机辅助设计AutoCAD》教学资源(PPT课件)第6章 文字标注.ppt
- 《计算机辅助设计AutoCAD》教学资源(PPT课件)第5章 编辑图形.ppt
- 《计算机辅助设计AutoCAD》教学资源(PPT课件)第4章 绘制图形.ppt
- 《计算机辅助设计AutoCAD》教学资源(PPT课件)第3章 绘图设置.ppt
- 华南理工大学电子与信息学院:《数字信号与处理》(英文版)Lecture 9 LTI Discrete-Time Systems in the Transform domain.ppt
- 华南理工大学电子与信息学院:《数字信号与处理》(英文版)Lecture 10 Phase and Group Delays.ppt
- 华南理工大学电子与信息学院:《数字信号与处理》(英文版)Lecture 11 Stability Condition in Terms of the pole locations.ppt
- 华南理工大学电子与信息学院:《数字信号与处理》(英文版)Lecture 12 Linear-Phase fr Transfer Functions.ppt
- 华南理工大学电子与信息学院:《数字信号与处理》(英文版)Lecture 13 Simple Digital Filters.ppt
- 华南理工大学电子与信息学院:《数字信号与处理》(英文版)Lecture 14 Comb Filters.ppt
- 《聚合物物理学》第一单元 聚合物化学结构.ppt
- 《聚合物物理学》第二单元 高分子热力学.ppt
- 《聚合物物理学》第三单元 聚合物运动学.ppt
- 《聚合物物理学》第四单元 聚合物有序结构.ppt
- 《聚合物物理学》第五单元 极限力学性能.ppt
- 《聚合物物理学》教学计划.doc
- 《聚合物物理学》电子课件(共五单元).doc
- 《雅思英语词汇》讲义.doc
- 国防科技大学人文与管理学院:《管理经济学》第四讲 生产理论与生产决策分析(孙多勇).ppt
- 国防科技大学人文与管理学院:《管理经济学》第五讲 成本利润分析(孙多勇).ppt
- 国防科技大学人文与管理学院:《管理经济学》第一讲 概述(孙多勇).ppt
- 国防科技大学人文与管理学院:《管理经济学》第二讲 需求、供给与市场均衡(孙多勇).ppt
- 国防科技大学人文与管理学院:《管理经济学》第六讲 市场结构与市场竞争(孙多勇).ppt
- 国防科技大学人文与管理学院:《管理经济学》第三讲 消费者行为与需求理论(孙多勇).ppt