华南理工大学电子与信息学院:《数字信号与处理》(英文版)Lecture 9 LTI Discrete-Time Systems in the Transform domain

LTI Discrete-Time Systems in the Transform domain An lti discrete-time system is completely characterized in the time-domain by its impulse response thin We consider now the use of the dtft and the z-transform in developing the transform- domain representations of an lti system Copyright C 2001, S K. Mitra
Copyright © 2001, S. K. Mitra 1 LTI Discrete-Time Systems in the Transform Domain • An LTI discrete-time system is completely characterized in the time-domain by its impulse response {h[n]} • We consider now the use of the DTFT and the z-transform in developing the transformdomain representations of an LTI system

Finite-Dimensional lt Discrete-Time Systems We consider lti discrete -time systems characterized by linear constant-coefficient difference equations of the form aky{n-k]=∑pkxn-k k=0 k=0 Copyright C 2001, S K. Mitra
Copyright © 2001, S. K. Mitra 2 Finite-Dimensional LTI Discrete-Time Systems • We consider LTI discrete-time systems characterized by linear constant-coefficient difference equations of the form: = = − = − M k k N k k d y n k p x n k 0 0 [ ] [ ]

Finite-Dimensional LT Discrete-Time Systems Applying the dtft to the difference equation and making use of the linearity and the time-invariance properties of Table 3.2 we arrive at the input-output relation in the transform-domain as he加 (e0)=∑peK(e°) k=0 k=0 where Y(e/o)and X(e/)are the dfTs of vn] and xn], respectively Copyright C 2001, S K. Mitra
Copyright © 2001, S. K. Mitra 3 Finite-Dimensional LTI Discrete-Time Systems • Applying the DTFT to the difference equation and making use of the linearity and the time-invariance properties of Table 3.2 we arrive at the input-output relation in the transform-domain as where and are the DTFTs of y[n] and x[n], respectively ( ) ( ) 0 0 = − = − = j M k j k k j N k j k k d e Y e p e X e ( ) j Y e ( ) j X e

Finite-Dimensional lt Discrete-Time Systems In developing the transform-domain representation of the difference equation. it has been tacitly assumed that X(e o) an Y(e/)exist The previous equation can be alternately written as N∑三 (0k e (e0)=∑pk eJ在 X( k=0 Copyright C 2001, S K. Mitra
Copyright © 2001, S. K. Mitra 4 Finite-Dimensional LTI Discrete-Time Systems • In developing the transform-domain representation of the difference equation, it has been tacitly assumed that and exist • The previous equation can be alternately written as ( ) j Y e ( ) j X e ( ) ( ) 0 0 = − = − = j M k j k k j N k j k k d e Y e p e X e

Finite-DimensionallTi Discrete- Time Systems Applying the z-transform to both sides of the difference equation and making use of the linearity and the time-invariance properties of Table 3.9 we arrive at N ∑dk=Y(-)=∑Pk=X(=) k=0 k=0 where y(z) and X(z) denote the z-transforms of yn and xn with associated ROCs respectivel Copyright C 2001, S K. Mitra
Copyright © 2001, S. K. Mitra 5 Finite-Dimensional LTI Discrete-Time Systems • Applying the z-transform to both sides of the difference equation and making use of the linearity and the time-invariance properties of Table 3.9 we arrive at where Y(z) and X(z) denote the z-transforms of y[n] and x[n] with associated ROCs, respectively d z Y(z) p z X(z) M k k k N k k k = − = − = 0 0

Finite-Dimensional lt Discrete-Time Systems a more convenient form of the z-domain representation of the difference equation is given by ∑4k=k(二)=1∑Pkz-kx() k=0 k=0 Copyright C 2001, S K. Mitra
Copyright © 2001, S. K. Mitra 6 Finite-Dimensional LTI Discrete-Time Systems • A more convenient form of the z-domain representation of the difference equation is given by d z Y(z) p z X(z) M k k k N k k k = = − = − 0 0

The Frequency Response Most discrete-time signals encountered in practice can be represented as a linear combination of a very large, possibly infinite. number of sinusoidal discrete -time signals of different angular frequencies Thus, knowing the response of the lti system to a single sinusoidal signal, we can determine its response to more complicated signals by making use of the superposition property Copyright C 2001, S K. Mitra
Copyright © 2001, S. K. Mitra 7 The Frequency Response • Most discrete-time signals encountered in practice can be represented as a linear combination of a very large, possibly infinite, number of sinusoidal discrete-time signals of different angular frequencies • Thus, knowing the response of the LTI system to a single sinusoidal signal, we can determine its response to more complicated signals by making use of the superposition property

The Frequency Response An important property of an Lti system is that for certain types of input signals, called eigen functions, the output signal is the input signal multiplied by a complex constant We consider here one such eigen function as the input Copyright C 2001, S K. Mitra
Copyright © 2001, S. K. Mitra 8 The Frequency Response • An important property of an LTI system is that for certain types of input signals, called eigen functions, the output signal is the input signal multiplied by a complex constant • We consider here one such eigen function as the input

The Frequency Response Consider the lti discrete-time system with an impulse response thin shown below hin Its input-output relationship in the time domain is given by the convolution sum y{n]=∑k]xn-k k=-0o Copyright C 2001, S K. Mitra
Copyright © 2001, S. K. Mitra 9 • Consider the LTI discrete-time system with an impulse response {h[n]} shown below • Its input-output relationship in the timedomain is given by the convolution sum The Frequency Response x[n] h[n] y[n] =− = − k y[n] h[k]x[n k]

The Frequency Response If the input is of the form on 0<1<00 then it follows that the output is given by y=∑Mke0)=∑小kk k k Let H(e10)=∑k]le k k -00 10 Copyright C 2001, S K. Mitra
Copyright © 2001, S. K. Mitra 10 The Frequency Response • If the input is of the form then it follows that the output is given by • Let = − x n e n j n [ ] , j n k j k k j n k y n h k e h k e e =− − =− − [ ] = [ ] = [ ] ( ) = =− − k j j k H(e ) h[k]e
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 华南理工大学电子与信息学院:《数字信号与处理》(英文版)Lecture 8 z-Transform.ppt
- 华南理工大学电子与信息学院:《数字信号与处理》(英文版)Lecture 7 DTFT Properties.ppt
- 华南理工大学电子与信息学院:《数字信号与处理》(英文版)Lecture 6 Transform-Domain Representation of Discrete-Time Signals.ppt
- 华南理工大学电子与信息学院:《数字信号与处理》(英文版)Lecture 5 Stability Condition of a Discrete-Time LTI System.ppt
- 华南理工大学电子与信息学院:《数字信号与处理》(英文版)Lecture 4 Discrete-Time Systems.ppt
- 华南理工大学电子与信息学院:《数字信号与处理》(英文版)Lecture 3 Discrete-Time Signals Time-Domain Representation.ppt
- 华南理工大学电子与信息学院:《数字信号与处理》(英文版)Lecture 1 Instructor.ppt
- 华南理工大学电子与信息学院:《数字信号与处理》第七章 数字滤波器设计.ppt
- 华南理工大学电子与信息学院:《数字信号与处理》第六章 数字滤波器的结构.ppt
- 华南理工大学电子与信息学院:《数字信号与处理》第五章 连续时间信号的数字处理.ppt
- 华南理工大学电子与信息学院:《数字信号与处理》第四章 LTI离散时间系统在变换域中的分析.ppt
- 华南理工大学电子与信息学院:《数字信号与处理》第三章 变换域中的离散时间信号.ppt
- 华南理工大学电子与信息学院:《数字信号与处理》第二章 离散时间信号与系统的时域分析.ppt
- 华南理工大学电子与信息学院:《数字信号与处理》第一章 数字信号处理.ppt
- 《计算机辅助设计AutoCAD》教学资源(PPT课件)第9章 协同设计.ppt
- 《计算机辅助设计AutoCAD》教学资源(PPT课件)第8章 块及属性块.ppt
- 《计算机辅助设计AutoCAD》教学资源(PPT课件)第7章 尺寸标注.ppt
- 《计算机辅助设计AutoCAD》教学资源(PPT课件)第6章 文字标注.ppt
- 《计算机辅助设计AutoCAD》教学资源(PPT课件)第5章 编辑图形.ppt
- 《计算机辅助设计AutoCAD》教学资源(PPT课件)第4章 绘制图形.ppt
- 华南理工大学电子与信息学院:《数字信号与处理》(英文版)Lecture 10 Phase and Group Delays.ppt
- 华南理工大学电子与信息学院:《数字信号与处理》(英文版)Lecture 11 Stability Condition in Terms of the pole locations.ppt
- 华南理工大学电子与信息学院:《数字信号与处理》(英文版)Lecture 12 Linear-Phase fr Transfer Functions.ppt
- 华南理工大学电子与信息学院:《数字信号与处理》(英文版)Lecture 13 Simple Digital Filters.ppt
- 华南理工大学电子与信息学院:《数字信号与处理》(英文版)Lecture 14 Comb Filters.ppt
- 《聚合物物理学》第一单元 聚合物化学结构.ppt
- 《聚合物物理学》第二单元 高分子热力学.ppt
- 《聚合物物理学》第三单元 聚合物运动学.ppt
- 《聚合物物理学》第四单元 聚合物有序结构.ppt
- 《聚合物物理学》第五单元 极限力学性能.ppt
- 《聚合物物理学》教学计划.doc
- 《聚合物物理学》电子课件(共五单元).doc
- 《雅思英语词汇》讲义.doc
- 国防科技大学人文与管理学院:《管理经济学》第四讲 生产理论与生产决策分析(孙多勇).ppt
- 国防科技大学人文与管理学院:《管理经济学》第五讲 成本利润分析(孙多勇).ppt
- 国防科技大学人文与管理学院:《管理经济学》第一讲 概述(孙多勇).ppt
- 国防科技大学人文与管理学院:《管理经济学》第二讲 需求、供给与市场均衡(孙多勇).ppt
- 国防科技大学人文与管理学院:《管理经济学》第六讲 市场结构与市场竞争(孙多勇).ppt
- 国防科技大学人文与管理学院:《管理经济学》第三讲 消费者行为与需求理论(孙多勇).ppt
- 《地震百问》PDF电子书.pdf