华南理工大学电子与信息学院:《数字信号与处理》(英文版)Lecture 13 Simple Digital Filters

Simple Digital Filters Later in the course we shall review various methods of designing frequency-selective filters satisfying prescribed specifications We now describe several low-order fr and IIr digitalfilters with reasonable selective frequency responses that often are satisfactory in a number of applications Copyright C 2001, S K. Mitra
Copyright © 2001, S. K. Mitra 1 Simple Digital Filters • Later in the course we shall review various methods of designing frequency-selective filters satisfying prescribed specifications • We now describe several low-order FIR and IIR digital filters with reasonable selective frequency responses that often are satisfactory in a number of applications

Simple FIR Digital Filters Fir digital filters considered here have integer-valued impulse response coefficients These filters are employed in a number of practical applications, primarily because of their simplicity, which makes them amenable to inexpensive hardware implementations Copyright C 2001, S K. Mitra
Copyright © 2001, S. K. Mitra 2 Simple FIR Digital Filters • FIR digital filters considered here have integer-valued impulse response coefficients • These filters are employed in a number of practical applications, primarily because of their simplicity, which makes them amenable to inexpensive hardware implementations

Simple FIR Digital Filters Lowpass Fir digital Filters The simplest lowpass Fir digital filter is the 2-point moving-average filter given by H)=(1+=-2) z+1 2z The above transfer function has a zero at z=-l and a pole at z=0 Note that here the pole vector has a unity magnitude for all values of o 3 Copyright C 2001, S K. Mitra
Copyright © 2001, S. K. Mitra 3 Simple FIR Digital Filters Lowpass FIR Digital Filters • The simplest lowpass FIR digital filter is the 2-point moving-average filter given by • The above transfer function has a zero at and a pole at z = 0 • Note that here the pole vector has a unity magnitude for all values of w z z H z z 2 1 1 1 2 1 0 + = + = − ( ) ( ) z = −1

Simple FIR Digital Filters On the other hand as o increases from o to T the magnitude of the zero vector decreases from a value of 2 the diameter of the unit circle to o Hence, the magnitude response Ho(e) is a monotonically decreasing function of a from o=o to O=u 4 Copyright C 2001, S K. Mitra
Copyright © 2001, S. K. Mitra 4 Simple FIR Digital Filters • On the other hand, as w increases from 0 to p, the magnitude of the zero vector decreases from a value of 2, the diameter of the unit circle, to 0 • Hence, the magnitude response is a monotonically decreasing function of w from w = 0 to w = p | ( )| 0 jw H e

Simple FIR Digital Filters The maximum value of the magnitude function is 1 at o=0 and the minimum value is0atO=π,e, (e0)=1,|H(ez)=0 The frequency response of the above filter Is given by ho(ejo)=e jo/2 cos(@/2) Copyright C 2001, S K. Mitra
Copyright © 2001, S. K. Mitra 5 Simple FIR Digital Filters • The maximum value of the magnitude function is 1 at w = 0, and the minimum value is 0 at w = p, i.e., • The frequency response of the above filter is given by 1 0 0 0 | 0 ( )| = , | ( )| = j jp H e H e ( ) cos( / 2) / 2 0 = w jw − jw H e e

Simple FIR Digital Filters The magnitude response Ho(e )=coS(o/2) can be seen to be a monotonical decreasing function of@ First-order FIR lowpass filter 0.8 306 0.6 Copyright C 2001, S K. Mitra
Copyright © 2001, S. K. Mitra 6 Simple FIR Digital Filters • The magnitude response can be seen to be a monotonically decreasing function of w | ( )| cos( / 2) 0 = w jw H e 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 w/p Magnitude First-order FIR lowpass filter

Simple FIR Digital Filters The frequency o=@cat which 0 e is of practical interest since here the gang(O) in dB is given by G(Oc)=201ogoH(e/uc) 2010g101 0)-20og0 2=-3dB since the dc gain G(0)=201og. H(e)=o Copyright C 2001, S K. Mitra
Copyright © 2001, S. K. Mitra 7 Simple FIR Digital Filters • The frequency at which is of practical interest since here the gain in dB is given by since the dc gain w= wc ( ) 2 1 ( ) 0 0 0 j j H e H e c = w ( ) G wc 20log ( ) 20log10 2 3 dB 0 = 10 − − j H e ( ) G wc 20log ( ) 10 c j H e w = 0 20 0 0 10 ( ) = log ( ) = j G H e

Simple FIR Digital Filters Thus, the gain G() at @=@ is approximately 3 db less than the gain at o=0 As a result, a is called the 3-dB cutoff frequency To determine the value of o we set o(e)2=cos(00/2)=2 which yields o=兀 8 Copyright C 2001, S K. Mitra
Copyright © 2001, S. K. Mitra 8 Simple FIR Digital Filters • Thus, the gain G(w) at is approximately 3 dB less than the gain at w = 0 • As a result, is called the 3-dB cutoff frequency • To determine the value of we set which yields w= wc wc wc wc = p/ 2 2 2 2 1 0 | ( )| = cos (w / 2) = w c j c H e

Simple FIR Digital Filters The 3-dB cutoff frequency @c can be considered as the passband edge frequency As a result, for the filter Ho(z)the passband width is approximately T /2 The stopband is from /2 to T Note:H0(二-) has a zero at z=-10ro=元, which is in the stopband of the filter Copyright C 2001, S K. Mitra
Copyright © 2001, S. K. Mitra 9 Simple FIR Digital Filters • The 3-dB cutoff frequency can be considered as the passband edge frequency • As a result, for the filter the passband width is approximately p/2 • The stopband is from p/2 to p • Note: has a zero at or w = p, which is in the stopband of the filter wc H (z) 0 H (z) 0 z = −1

Simple FIR Digital Filters a cascade of the simple fir filters results in an improved lowpass frequency response as illustrated below for a cascade of 3 sections First-order Fir lowpass filter cascade 0.6 0.4 0.2 10 0.8 Copyright C 2001, S K. Mitra
Copyright © 2001, S. K. Mitra 10 Simple FIR Digital Filters • A cascade of the simple FIR filters results in an improved lowpass frequency response as illustrated below for a cascade of 3 sections ( ) ( ) 1 2 1 0 1 − H z = + z 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 w/p Magnitude First-order FIR lowpass filter cascade
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 华南理工大学电子与信息学院:《数字信号与处理》(英文版)Lecture 12 Linear-Phase fr Transfer Functions.ppt
- 华南理工大学电子与信息学院:《数字信号与处理》(英文版)Lecture 11 Stability Condition in Terms of the pole locations.ppt
- 华南理工大学电子与信息学院:《数字信号与处理》(英文版)Lecture 10 Phase and Group Delays.ppt
- 华南理工大学电子与信息学院:《数字信号与处理》(英文版)Lecture 9 LTI Discrete-Time Systems in the Transform domain.ppt
- 华南理工大学电子与信息学院:《数字信号与处理》(英文版)Lecture 8 z-Transform.ppt
- 华南理工大学电子与信息学院:《数字信号与处理》(英文版)Lecture 7 DTFT Properties.ppt
- 华南理工大学电子与信息学院:《数字信号与处理》(英文版)Lecture 6 Transform-Domain Representation of Discrete-Time Signals.ppt
- 华南理工大学电子与信息学院:《数字信号与处理》(英文版)Lecture 5 Stability Condition of a Discrete-Time LTI System.ppt
- 华南理工大学电子与信息学院:《数字信号与处理》(英文版)Lecture 4 Discrete-Time Systems.ppt
- 华南理工大学电子与信息学院:《数字信号与处理》(英文版)Lecture 3 Discrete-Time Signals Time-Domain Representation.ppt
- 华南理工大学电子与信息学院:《数字信号与处理》(英文版)Lecture 1 Instructor.ppt
- 华南理工大学电子与信息学院:《数字信号与处理》第七章 数字滤波器设计.ppt
- 华南理工大学电子与信息学院:《数字信号与处理》第六章 数字滤波器的结构.ppt
- 华南理工大学电子与信息学院:《数字信号与处理》第五章 连续时间信号的数字处理.ppt
- 华南理工大学电子与信息学院:《数字信号与处理》第四章 LTI离散时间系统在变换域中的分析.ppt
- 华南理工大学电子与信息学院:《数字信号与处理》第三章 变换域中的离散时间信号.ppt
- 华南理工大学电子与信息学院:《数字信号与处理》第二章 离散时间信号与系统的时域分析.ppt
- 华南理工大学电子与信息学院:《数字信号与处理》第一章 数字信号处理.ppt
- 《计算机辅助设计AutoCAD》教学资源(PPT课件)第9章 协同设计.ppt
- 《计算机辅助设计AutoCAD》教学资源(PPT课件)第8章 块及属性块.ppt
- 华南理工大学电子与信息学院:《数字信号与处理》(英文版)Lecture 14 Comb Filters.ppt
- 《聚合物物理学》第一单元 聚合物化学结构.ppt
- 《聚合物物理学》第二单元 高分子热力学.ppt
- 《聚合物物理学》第三单元 聚合物运动学.ppt
- 《聚合物物理学》第四单元 聚合物有序结构.ppt
- 《聚合物物理学》第五单元 极限力学性能.ppt
- 《聚合物物理学》教学计划.doc
- 《聚合物物理学》电子课件(共五单元).doc
- 《雅思英语词汇》讲义.doc
- 国防科技大学人文与管理学院:《管理经济学》第四讲 生产理论与生产决策分析(孙多勇).ppt
- 国防科技大学人文与管理学院:《管理经济学》第五讲 成本利润分析(孙多勇).ppt
- 国防科技大学人文与管理学院:《管理经济学》第一讲 概述(孙多勇).ppt
- 国防科技大学人文与管理学院:《管理经济学》第二讲 需求、供给与市场均衡(孙多勇).ppt
- 国防科技大学人文与管理学院:《管理经济学》第六讲 市场结构与市场竞争(孙多勇).ppt
- 国防科技大学人文与管理学院:《管理经济学》第三讲 消费者行为与需求理论(孙多勇).ppt
- 《地震百问》PDF电子书.pdf
- 《物流案例》案例 30 沃尔玛、戴尔:世界主流商业模式典范研究解析.doc
- 《物流案例》案例 1:德国铁老大的物流演义.doc
- 《物流案例》案例2 海尔以流程改造构建竞争优势.doc
- 《物流案例》案例3 看上海贝尔电子商务的供应链管理.doc