华南理工大学电子与信息学院:《数字信号与处理》(英文版)Lecture 14 Comb Filters

Comb Filters The simple filters discussed so far are characterized either by a single passband and/or a single stopband There are applications where filters with multiple passbands and stopbands are d required The comb filter is an example of such filters Copyright C 2001, S K Mitra
1 Copyright © 2001, S. K. Mitra Comb Filters • The simple filters discussed so far are characterized either by a single passband and/or a single stopband • There are applications where filters with multiple passbands and stopbands are required • The comb filter is an example of such filters

Comb Filters In its most general form. a comb filter has a frequency response that is a periodic function of o with a period 2T/L, where L is a positive integer If Hz) is a filter with a single passband and/or a single stopband, a comb filter can be easily generated from it by replacing each delay in its realization with L delays resulting in a structure with a transfer function given by G(z)=H(2) Copyright C 2001, S K Mitra
2 Copyright © 2001, S. K. Mitra Comb Filters • In its most general form, a comb filter has a frequency response that is a periodic function of w with a period 2p/L, where L is a positive integer • If H(z) is a filter with a single passband and/or a single stopband, a comb filter can be easily generated from it by replacing each delay in its realization with L delays resulting in a structure with a transfer function given by ( ) ( ) L G z = H z

Comb Filters If H(e/o) exhibits a peak at O,, then G(e/o) will exhibit L peaks at o,k/L,0≤k≤L-1 in the frequency range0≤0<2π Likewise, if H(e/o) has a notch at o then G(elo) will have L notches at o,k/L 0≤k≤L-1 in the frequency range0≤0<2兀 a comb filter can be generated from either an FiR or an iir prototype filter Copyright C 2001, S K Mitra
3 Copyright © 2001, S. K. Mitra Comb Filters • If exhibits a peak at , then will exhibit L peaks at , in the frequency range • Likewise, if has a notch at , then will have L notches at , in the frequency range • A comb filter can be generated from either an FIR or an IIR prototype filter | ( )| jw H e | ( )| jw H e | ( )| jw G e | ( )| jw wp G e wo wp k/L wo k/L 0 k L −1 0 k L −1 0 w 2p 0 w 2p

Comb Filters For example the comb filter generated from the prototype lowpass FIR filter Ho(z) 1(1+z)has a transfer function L L (-)=H0(2)=;(1+2) Go(e )l has L notches Comb filter from lowpass prototype ato=(2k+1)T /L and L osk peaks at o=2兀M,1 O<k<L-1. in the frequency range 0<0<2 0.5 1.5 o/ Copyright C 2001, S K Mitra
4 Copyright © 2001, S. K. Mitra Comb Filters • For example, the comb filter generated from the prototype lowpass FIR filter has a transfer function • has L notches at w = (2k+1)p/L and L peaks at w = 2p k/L, ( ) 1 2 1 1 − + z H0 (z) = ( ) ( ) ( ) L L G z H z z − = = 1+ 2 1 0 0 0 k L −1 , in the frequency range 0 w 2p | ( )| 0 jw G e 0 0.5 1 1.5 2 0 0.2 0.4 0.6 0.8 1 w/p Magnitude Comb filter from lowpass prototype

Comb Filters For example, the comb filter generated from the prototype highpass FIR filter H1(z) 1(1-z)has a transfer function G1()=H1(2)=(1-z1) Gie has L peaks Comb filter from highpass prototype at Q=(2K+1)I/L and L notches at a=2兀kL 0<k≤L-1. in the frequency range 0<0<2 Copyright C 2001,S K Mitra
5 Copyright © 2001, S. K. Mitra Comb Filters • For example, the comb filter generated from the prototype highpass FIR filter has a transfer function • has L peaks at w = (2k+1)p/L and L notches at w = 2p k/L, | ( )| 1 jw G e ( ) 1 2 1 1 − − z H1 (z) = ( ) ( ) ( ) L L G z H z z − = = 1− 2 1 1 1 0 k L −1 , in the frequency range 0 w 2p 0 0.5 1 1.5 2 0 0.2 0.4 0.6 0.8 1 w/p Magnitude Comb filter from highpass prototype

Comb Filters Depending on applications, comb filters with other types of periodic magnitude responses can be easily generated by appropriately choosing the prototype filter For example, the M-point moving average filter H(z) 2 M(1-z has been used as a prototype Copyright C 2001, S K Mitra
6 Copyright © 2001, S. K. Mitra Comb Filters • Depending on applications, comb filters with other types of periodic magnitude responses can be easily generated by appropriately choosing the prototype filter • For example, the M-point moving average filter has been used as a prototype ( ) ( ) 1 1 1 − − − − = M z z M H z

Comb Filters This filter has a peak magnitude at o=0 and dM-1 notches at o=2/M1≤≤M The corresponding comb filter has a transfer function 1--LM G(z)=M-L whose magnitude has l peaks at o=2Tk/L 0≤k≤L-1andL(M-1) notches at 0=2兀MLM,1≤k≤L(M-1) Copyright C 2001, S K Mitra
7 Copyright © 2001, S. K. Mitra Comb Filters • This filter has a peak magnitude at w = 0, and notches at , • The corresponding comb filter has a transfer function whose magnitude has L peaks at , and notches at , M −1 w = 2p / M 1 M −1 ( ) ( ) L LM M z z G z − − − − = 1 1 w = 2pk/L 0 k L −1 L(M −1) w= 2pk/LM 1 k L(M −1)

Allpass Transfer Function Definition An IR transfer function A(z)with unity magnitude response for all frequencies, i.e A(e )=1, for all o is called an allpass transfer function An m-th order causal real-coefficient allpass transfer function is of the form A1(2)=±+d M+1 M M-1 z+…+a1z 1+l1=1++d10-12-M+1+lb=-M Copyright C 2001, S K Mitra
8 Copyright © 2001, S. K. Mitra Allpass Transfer Function Definition • An IIR transfer function A(z) with unity magnitude response for all frequencies, i.e., is called an allpass transfer function • An M-th order causal real-coefficient allpass transfer function is of the form = w w | ( )| 1, for all j 2 A e M M M M M M M M M d z d z d z d d z d z z A z − + − − − − − + − − + + + + + + + + = 1 1 1 1 1 1 1 1 1 ... ... ( )

pass Transter Function If we denote the denominator polynomial of AM(zas dm(z) D/()=1+d1= M+1 +…+c dmz then it follows that AM(z)can be written as M 2 2 Note from the above that if z=reJo is a pole of a real coefficient allpass transfer function, then it has a zero at z=le Copyright C 2001, S K Mitra
9 Copyright © 2001, S. K. Mitra Allpass Transfer Function • If we denote the denominator polynomial of as : then it follows that can be written as: • Note from the above that if is a pole of a real coefficient allpass transfer function, then it has a zero at AM (z) DM (z) M M M DM z d z dM z d z − + − − − = + + + + 1 1 1 1 1 ... ( ) AM (z) ( ) ( ) ( ) D z z D z M M M M A z − −1 = = j z re − = j r z e 1

pass I ransrer Function The numerator of a real-coefficient allpass transfer function is said to be the mirror- image polynomial of the denominator, and vice versa We shall use the notation DM(z) to denote the mirror-image polynomial of a degree-M polynomial DM(2),i.e M 10 Copyright C 2001, S K Mitra
10 Copyright © 2001, S. K. Mitra Allpass Transfer Function • The numerator of a real-coefficient allpass transfer function is said to be the mirrorimage polynomial of the denominator, and vice versa • We shall use the notation to denote the mirror-image polynomial of a degree-M polynomial , i.e., DM (z) ~ DM (z) D (z) z DM (z) M M − = ~
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 华南理工大学电子与信息学院:《数字信号与处理》(英文版)Lecture 13 Simple Digital Filters.ppt
- 华南理工大学电子与信息学院:《数字信号与处理》(英文版)Lecture 12 Linear-Phase fr Transfer Functions.ppt
- 华南理工大学电子与信息学院:《数字信号与处理》(英文版)Lecture 11 Stability Condition in Terms of the pole locations.ppt
- 华南理工大学电子与信息学院:《数字信号与处理》(英文版)Lecture 10 Phase and Group Delays.ppt
- 华南理工大学电子与信息学院:《数字信号与处理》(英文版)Lecture 9 LTI Discrete-Time Systems in the Transform domain.ppt
- 华南理工大学电子与信息学院:《数字信号与处理》(英文版)Lecture 8 z-Transform.ppt
- 华南理工大学电子与信息学院:《数字信号与处理》(英文版)Lecture 7 DTFT Properties.ppt
- 华南理工大学电子与信息学院:《数字信号与处理》(英文版)Lecture 6 Transform-Domain Representation of Discrete-Time Signals.ppt
- 华南理工大学电子与信息学院:《数字信号与处理》(英文版)Lecture 5 Stability Condition of a Discrete-Time LTI System.ppt
- 华南理工大学电子与信息学院:《数字信号与处理》(英文版)Lecture 4 Discrete-Time Systems.ppt
- 华南理工大学电子与信息学院:《数字信号与处理》(英文版)Lecture 3 Discrete-Time Signals Time-Domain Representation.ppt
- 华南理工大学电子与信息学院:《数字信号与处理》(英文版)Lecture 1 Instructor.ppt
- 华南理工大学电子与信息学院:《数字信号与处理》第七章 数字滤波器设计.ppt
- 华南理工大学电子与信息学院:《数字信号与处理》第六章 数字滤波器的结构.ppt
- 华南理工大学电子与信息学院:《数字信号与处理》第五章 连续时间信号的数字处理.ppt
- 华南理工大学电子与信息学院:《数字信号与处理》第四章 LTI离散时间系统在变换域中的分析.ppt
- 华南理工大学电子与信息学院:《数字信号与处理》第三章 变换域中的离散时间信号.ppt
- 华南理工大学电子与信息学院:《数字信号与处理》第二章 离散时间信号与系统的时域分析.ppt
- 华南理工大学电子与信息学院:《数字信号与处理》第一章 数字信号处理.ppt
- 《计算机辅助设计AutoCAD》教学资源(PPT课件)第9章 协同设计.ppt
- 《聚合物物理学》第一单元 聚合物化学结构.ppt
- 《聚合物物理学》第二单元 高分子热力学.ppt
- 《聚合物物理学》第三单元 聚合物运动学.ppt
- 《聚合物物理学》第四单元 聚合物有序结构.ppt
- 《聚合物物理学》第五单元 极限力学性能.ppt
- 《聚合物物理学》教学计划.doc
- 《聚合物物理学》电子课件(共五单元).doc
- 《雅思英语词汇》讲义.doc
- 国防科技大学人文与管理学院:《管理经济学》第四讲 生产理论与生产决策分析(孙多勇).ppt
- 国防科技大学人文与管理学院:《管理经济学》第五讲 成本利润分析(孙多勇).ppt
- 国防科技大学人文与管理学院:《管理经济学》第一讲 概述(孙多勇).ppt
- 国防科技大学人文与管理学院:《管理经济学》第二讲 需求、供给与市场均衡(孙多勇).ppt
- 国防科技大学人文与管理学院:《管理经济学》第六讲 市场结构与市场竞争(孙多勇).ppt
- 国防科技大学人文与管理学院:《管理经济学》第三讲 消费者行为与需求理论(孙多勇).ppt
- 《地震百问》PDF电子书.pdf
- 《物流案例》案例 30 沃尔玛、戴尔:世界主流商业模式典范研究解析.doc
- 《物流案例》案例 1:德国铁老大的物流演义.doc
- 《物流案例》案例2 海尔以流程改造构建竞争优势.doc
- 《物流案例》案例3 看上海贝尔电子商务的供应链管理.doc
- 《物流案例》案例4 中海:完善的物流信息化系统.doc