香港中文大学:由耦合演化驱动的网络结构与相分离行为(PPT讲稿)Disconnected-connected network transitions and phase separation driven by coevolving dynamics

Disconnected-connected network transitions and phase separation driven by coevolving dynamics 由耦合演化驱动的网络结构与相分离行为 Pak Ming Hui许伯铭 Department of Physics香港中文大学物理系 The Chinese University of Hong Kong In collaborations with Oliver Graser顾皓森(CUHK Chen Xu许晨( Soochow University CCCN 2010 (15-17 October 2010, Suzhou
Disconnected-connected network transitions and phase separation driven by coevolving dynamics 由耦合演化驱动的网络结构与相分离行为 Pak Ming Hui 许伯铭 Department of Physics The Chinese University of Hong Kong 香港中文大学 物理系 In collaborations with: Oliver Gräser 顾皓森 (CUHK) Chen XU许晨 (Soochow University) CCCN 2010 (15-17 October 2010, Suzhou)

Dynamic models Two dynamics (SIS, SIR Influencing one opInion another formation), or games (PD, SG,.) COMPUTER SIMULATIONS 中心 COEVOLVING NEW SYSTEM FEATURES? THEORIES NETWORKS REAL (group dynamics SYSTEMS To read more on the topic in general Perc and Szolnoki, Biosystems 99, 109(2009) Szabo and Fath, Physics Reports 446, 97(2007) Gross and blasius, J.R. Soc. Interface 5, 259(2008)
Dynamic models (SIS,SIR, opinion formation), or games (PD,SG,…) NETWORKS (group dynamics) NEW FEATURES? COMPUTER SIMULATIONS THEORIES REAL SYSTEMS COEVOLVING SYSTEM Two dynamics influencing one another To read more on the topic in general: Perc and Szolnoki, Biosystems 99, 109 (2009) Szabo and Fath, Physics Reports 446, 97 (2007) Gross and Blasius, J. R. Soc. Interface 5, 259 (2008)

Dynamic models (SIS, SIR, opinion Two dynamics formation), or influencing one another games (PD, SG, .) COMPUTER SIMULATIONS 中哈( NEW FEATURES? THEORIES NETWORKS (group REAL dynamics SYSTEMS The general ideas have been applied to Adaptive epidemic models: e.g., Gross et al., PRL 96, 208701(2006); Shaw and Schwartz, PRE71, 066101(2008 Opinion formation models: e.g., Vazquez et al., PRL 100, 108702 (2008); Nardini et al.. PRL100,158701(2008) Wars and human conflicts: e.g. Bohorquez et al., Nature 462, 911(2009); Zhao etal,PRL103,148701(2009)
Dynamic models (SIS,SIR, opinion formation), or games (PD,SG,…) NETWORKS (group dynamics) NEW FEATURES? COMPUTER SIMULATIONS THEORIES REAL SYSTEMS COEVOLVING SYSTEM Two dynamics influencing one another The general ideas have been applied to: Adaptive epidemic models: e.g., Gross et al., PRL 96, 208701 (2006); Shaw and Schwartz, PRE 71, 066101 (2008) Opinion formation models: e.g., Vazquez et al., PRL 100, 108702 (2008); Nardini et al., PRL 100, 158701 (2008) Wars and human conflicts: e.g. Bohorquez et al., Nature 462, 911 (2009); Zhao et al., PRL 103, 148701 (2009)

Dynamic models (SIS, SIR, opinion Two dynamics formation), or influencing one another games (PD, SG, .) COMPUTER SIMULATIONS 中哈( NEW FEATURES? THEORIES NETWORKS (group REAL dynamics SYSTEMS And more. (from PM Huis group) Modeling of guilds in online games World of Warcraft and LA street gangs- Zhao et al., PRE 79, 066117(2009) Effects of social group dynamics on contagion(You tube downloads foreign exchange rates, flu)-Zhao et al., PRE 81, 056107(2010)
Dynamic models (SIS,SIR, opinion formation), or games (PD,SG,…) NETWORKS (group dynamics) NEW FEATURES? COMPUTER SIMULATIONS THEORIES REAL SYSTEMS COEVOLVING SYSTEM Two dynamics influencing one another And more…(from PM Hui’s group): Modeling of guilds in online games (World of Warcraft) and LA street gangs – Zhao et al., PRE 79, 066117 (2009) Effects of social group dynamics on contagion (YouTube downloads, foreign exchange rates, flu) – Zhao et al., PRE 81, 056107 (2010)

Co-evolving Modeling-"Job Hunting Model An agent looks for a group that he thinks he could contribute a group assess the agent to see if he can contribute to the group After joining group agent has a better understanding of the group and assess the group (Can I really contribute? If agent is unhappy with the group agent will quit! If agent feels OK with the group, he still wants to find a better group If he finds a better group, he will switch group if not, he stays Team formation model (agents with skills that complement each other) against kinship(buddy-buddy ) model
Co-evolving Modeling – “Job Hunting Model” • An agent looks for a group that he thinks he could contribute • A group assess the agent to see if he can contribute to the group • After joining group, agent has a better understanding of the group and assess the group (Can I really contribute?) • If agent is unhappy with the group, agent will quit! • If agent feels OK with the group, he still wants to find a better group • If he finds a better group, he will switch group; if not, he stays • Team formation model (agents with skills that complement each other) against kinship (buddy-buddy) model

Main Empirical Results from Data Sets: Online guilds and offline street gangs World of warcraft World of warcraft LA gangs 1000 All guilds in all servers All guilds in all servers All gang (a) (b) 1000 s 100 0.7 -0.55 92 106 500 110°im0 L LL 10 100 10 1000 Wow guild size Cumulative gang size distribution N(s)for all Cumulative size distribution distribution of la guilds in 3 servers S1, S2, Inset: Churn vs guild size Street gangs with all S3(put together) in Oct ethnicity put together 2005 Total members 5214 Total players: 76686 Small data sets Steps even in N(s>s Data from: Ducheneaut and Yee(Palo alto Research Center)
Main Empirical Results from Data Sets: Online guilds and Offline street gangs Wow Guild size distribution N(s) for all guilds in 3 servers S1, S2, S3 (put together) in Oct 2005 Total players: 76686 Cumulative size distribution Inset: Churn vs guild size Cumulative gang size distribution of LA Street gangs with all ethnicity put together Total members: 5214 Small data sets Steps even in N(s’>s) Data from: Ducheneaut and Yee (Palo Alto Research Center)

All guilds in all servers Server: S1 N=766861000 (a) (b) N=24033 kinship model 100200 200 1o108 6100 s Server: S2 Server: S3 1000 N=24477 N=28176 100k200 200 ∧ u口日 0o10 100 250 s 10 WoW Empirical data (blue)& Team-formation Modeling Results(red) Cumulative guild size distribution and Churn vs guild size N from data is taken as input (data in oct 2005
WoW Empirical data (blue) & Team-formation Modeling Results (red) Cumulative guild size distribution and Churn vs guild size N from data is taken as input (data in Oct 2005) N=76686 N=24033 N=24477 N=28176

100 All gangs (e) ∧ N=5214 t10 10 100 1000 Cumulative gang size distribution Data(blue)and team-formation modeling results(red) Dashed line(kinship/ buddy-buddy model) See APS News item June 2009) http:/physics.aps.org/synopsis-for/10.1103/physreve.79.066117 for an news item reporting our work
Cumulative gang size distribution Data (blue) and team-formation modeling results (red) Dashed line (kinship/”buddy-buddy” model) N=5214 See APS News item (June 2009) http://physics.aps.org/synopsis-for/10.1103/PhysRevE.79.066117 for an news item reporting our work

Here, we use an adaptive snowdrift game as an example to illustrate how coupled dynamics influence each other and explicit coupled transitions in the form of disconnected to connected network transition(structural) highly cooperative to lower cooperative population(functional) segregated phase to mixed-character phase(population characteristics frozen to continously evolving(dynamical) how one could approach such problems analytically what to look at in formulating a theory and its validity what a proper theory can inform us about the properties of the system
Here, we • use an adaptive snowdrift game as an example to illustrate… -- how coupled dynamics influence each other and explicit coupled transitions in the form of • disconnected to connected network transition (structural) • highly cooperative to lower cooperative population (functional) • segregated phase to mixed-character phase (population characteristics) • frozen to continously evolving (dynamical) -- how one could approach such problems analytically -- what to look at in formulating a theory and its validity -- what a proper theory can inform us about the properties of the system

Snowdrift Game SDG)[1 ☆ Scenario Two drivers heading home in opposite directions Blocked by a snowdrift Each driver: 2 actions/characters C( cooperate")= to shovel the snowdrift D(“noto- operate”)OR‘ defect(in prisoner's dilemma language)=not to shovel [1]J M. Smith, Evolution and the Theory of Games( cambridge Univ Press 1982). In other contexts, the"game of chicken
Snowdrift Game (SDG) [1] ◼ Two drivers heading home in opposite directions ◼ Blocked by a snowdrift ◼ Each driver: 2 actions/characters C (“cooperate”) = to shovel the snowdrift D (“not-to-operate”) OR “defect”(in prisoner’s dilemma language) = not to shovel ❖Scenario: [1] J. M. Smith, Evolution and the Theory of Games ( Cambridge Univ. Press 1982). In other contexts, the “game of chicken
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《量子物理学》课程电子教案(PPT教学课件)第21章 量子光学基础 fundament of quantun optics(21.3-21.7).ppt
- 《电磁场与电磁波》课程电子教案(PPT教学课件)第1章 矢量分析.ppt
- 《电磁学》课程教学资源(PPT课件讲稿)第六章 磁介质.ppt
- 西安电子科技大学:《电波传播概论》课程教学资源(PPT课件讲稿)第三部分 电波传播环境介绍.pptx
- 中国科学技术大学:《半导体器件原理》课程教学资源(PPT课件讲稿)第六章 新型半导体器件.ppt
- 中国科学技术大学:《光电子技术》课程教学资源(PPT课件讲稿)第十一章 半导体发光器件(主讲:明海).ppt
- 山东大学物理学院:《电动力学》课程教学资源(PPT课件讲稿)第13讲 静电场 §2.5 格林函数法.ppt
- 太原师范学院:本科毕业生教育实习教案(高一物理——生活中的圆周运动).doc
- 《原子物理学》课程教学资源(PPT课件讲稿)第一章 原子的核式结构(玻尔原子模型).ppt
- 合肥工业大学:物理学是工程技术的基础(PPT讲稿,主讲:何晓雄).ppt
- 西安电子科技大学:《电磁场与电磁波》课程电子教案(PPT课件讲稿)第1章 矢量分析与场论(主讲:黄丘林).pptx
- 光学显微镜的使用方法(实验PPT讲稿).ppt
- 东南大学:对称能与非核子自由度及其它(专题PPT,物理系:蒋维洲).ppt
- 上海交通大学:密立根油滴实验(PPT课件讲稿)基本电荷测定.ppt
- 《大学物理》课程教学资源(PPT讲稿)16 波动(习题,含解答).ppt
- 山东大学物理学院:《电动力学》课程教学资源(PPT课件讲稿)第23讲 电磁波的辐射 §5.1 讯变电磁场的矢势和标势.ppt
- 《量子力学》课程教学资源(学习资料)考试大纲.doc
- High Energy cosmic-Radiation Detection(HERD)Facility onboard China’s Space Station.pptx
- 《原子物理》课程教学资源(PPT课件讲稿)原子的光谱及原子结构.ppt
- 西安电子科技大学:《数学物理方法概论》课程教学资源(PPT课件讲稿)第一章 微分几何(主讲:白璐).ppt
- 电磁学(PPT讲稿)Electromagnetism revision.ppt
- 《电磁场与电磁波》课程PPT教学课件(讲稿)第4章 时变电磁场.ppt
- 大学物理:《电动力学》课程教学资源(PPT课件讲稿)第六章 狭义相对论 Special Theory of Relativity.ppt
- 山东大学物理学院:《电动力学》课程教学资源(PPT课件讲稿)第26讲 狭义相对论 §3.2 相对论时空观(上).ppt
- 大学物理:《电动力学》课程教学资源(PPT课件讲稿)第四章 电磁波的传播 Electromagnetic Wave Propagation.ppt
- 陇东学院:《量子力学》教学指南教学指南.pdf
- 《电机学》课程电子教案(PPT教学课件)第四章 交流绕阻及其电动势和磁动势.ppt
- 《高分子物理》课程PPT教学课件(讲稿)第8章 聚合物的屈服与断裂 The yielding and fracture of polymers.ppt
- 《大学物理》课程PPT教学课件(振动和波动)第6章 振动学基础(Vibration).ppt
- 《电路》课程电子教案(PPT课件讲稿)电阻电路的等效变换(线性)、电阻电路的一般分析方法、电路定理、相量法、正弦稳态电路的分析.ppt
- 《大学物理》课程PPT教学课件(电磁学》第16章 变化的电磁场 Electromagnatic field changed.ppt
- 《大学物理》课程电子教案(PPT教学课件)第12章 导体电学 Conductor electricity、第13章 电介质 Dielectric.ppt
- 《固体物理》课程PPT教学课件(Solid State Physics)第四章 金属电子论——电子的费米统计.ppt
- 山东大学:《焊接物理》课程PPT教学课件(Welding Physics)第5章 焊丝设计基础(主讲:孙俊生).ppt
- 《量子力学》课程教学资源(学习资料)考试大纲(适用于物理学所有学科).doc
- 太原师范学院:本科毕业生教育实习教案(高二物理——自感现象).doc
- 《热力学》课程PPT教学课件(统计物理)第七章 统计物理初步.ppt
- 《电动力学》课程教学资源:教学大纲.doc
- 《应用物理学》课程教学资源(PPT课件讲稿)真空技术.ppt
- 山东大学物理学院:《电动力学》课程教学资源(PPT课件讲稿)第10讲 静电场 §2.2 唯一性定理.ppt