《自动化仪表与过程控制》课程学习资料:Control system design

Control system design 2022-2-11
2022-2-11 1 Control system design

Introduction System compensation is the process of designing a controller that will produce an acceptable transient response while maintaining a desired steady-state accuracy. These two design objectives are conflicting in most systems, since small errors imply high gains reduce system stability and may even drive the system unstable Compensation may be thought of as the process of increasing the stability of a system without reducing its accuracy below minimum acceptable standards 2022-2-11 2
2022-2-11 2 Introduction ¨ System compensation is the process of designing a controller that will produce an acceptable transient response while maintaining a desired steady-state accuracy .These two design objectives are conflicting in most systems ,since small errors imply high gains reduce system stability and may even drive the system unstable .Compensation may be thought of as the process of increasing the stability of a system without reducing its accuracy below minimum acceptable standards

Cascade lead compensation ◆ Introduction o The proportional plus derivative compensator has the unfortunate property that its high frequency gain is infinite This means that high frequency effects such as sensor noise and un-modelled high-frequency dynamics, e.g resonance terms, will be amplified with potentially disastrous effects. Of course, a real physical derivative operator cannot be implemented and any implementation will actually have poles that will limit the high-frequency gain. Recognizing this, an alternative to the pure P+D +D(S)=K D +K rop (6.1) 2022-2-11 3
2022-2-11 3 Cascade Lead Compensation ¨ Introduction ¨ The proportional plus derivative compensator has the unfortunate property that its high frequency gain is infinite. This means that high frequency effects, such as sensor noise and un-modelled high-frequency dynamics, e.g. resonance terms, will be amplified with potentially disastrous effects. Of course, a real physical derivative operator cannot be implemented and any implementation will actually have poles that will limit the high-frequency gain. Recognizing this, an alternative to the pure P+D P D prop D (s) K D s K (6.1)

is the So-called "lead compensator Dead(s)=K s+ (6.2) Where Considering the frequency response of (2) D=d(o)=K/1+ (6.3) J0+p0 The low and high -frequency gains are D lead K (64) lea (jo) K 0→0 (65) 2022-2-11 4
2022-2-11 4 is the so-called "lead compensator" 0 0 lead ( ) s p s z D s Kc 0 p z Where o Considering the frequency response of (2) 0 0 lead ( ) j p j z D j Kc (6.2) (6.3) The low and high-frequency gains are: c c D j K p z D j K ( ) ( ) lead 0 0 lead 0 (6.4) (6.5)

so that the ratio of high-to - low frequency gain is D1a(0)二0 The lead compensator is still a high-pass filter but the high frequency gain is limited by the pole at s=-Po. Typically, the ratio of po to zo is kept to below 10 2022-2-11 5
2022-2-11 5 so that the ratio of high-to-low frequency gain is 0 ( 0) ( ) 0 0 lead lead z p D j D j (6.6) The lead compensator is still a high-pass filter but the high frequency gain is limited by the pole at . Typically, the ratio of p0 to z0 is kept to below 10. p0 s

Properties of the Cascade lead compensator As, the angle contributed by the compensator to some arbitrary point s, at on the s-plane is illustrated in Figure 1 Im s-plane Re 2022-2-11 6
2022-2-11 6 Properties of the Cascade Lead Compensator ¨ As , the angle contributed by the compensator to some arbitrary point s1 at on the s-plane is illustrated in Figure 1. s-plane z 0 s 1 p0 p z Im Re

The net contribution is e=6.-0n>0 So that the lead compensator al ways makes a positive contribution to the angle criterion. This has the effect of allowing the closed-loop poles to move to the left in the s- lane The problem is then how to choose the relative location of the pole and the zero We reproduce the advice of D'AzZo and houris Method 1 Use the zero to cancel a low frequency real pole. This can simplify the root locus and reduce the complexity of the problem. The compensator pole is then placed such that S1 becomes a point on the desired root-locus. For a type-1 system, the real pole (excluding the pole at zero that is closest to the origin should be cancelled. For a type 0 system the second closest pole to the origin should be cancelled 2022-2-11
2022-2-11 7 The net contribution is 0 c z p So that the lead compensator always makes a positive contribution to the angle criterion. This has the effect of allowing the closed-loop poles to move to the left in the s- plane. The problem is then how to choose the relative location of the pole and the zero. We reproduce the advice of D'Azzo and Houpis. Method 1 Use the zero to cancel a low frequency real pole. This can simplify the root locus and reduce the complexity of the problem. The compensator pole is then placed such that s1 becomes a point on the desired root-locus. For a type-1 system, the real pole (excluding the pole at zero) that is closest to the origin should be cancelled. For a type 0 system, the second closest pole to the origin should be cancelled

Example 1 The following Matlab code illustrates these principles for the system with open-loop transfer function G s(s+ (67 Define the plant G1=tf(1,conv([1,01,[1,1]));H=1; root-locus locus(GI*H) 2022-2-11 8
2022-2-11 8 Example 1 The following Matlab code illustrates these principles for the system with open-loop transfer function ( 1 ) 1 1 s s G Define the plant G1 = tf(1,conv([1, 0],[1, 1])); H=1; root-locus rlocus(G1*H) (6.7)

0XmE -15 15 -0.5 Real Axis 2022-2-11 9
2022-2-11 9 -2 -1.5 -1 -0.5 0 0.5 1 -1.5-1 -0.50 0.51 1.5 Real Axis Imag Axis

Clearly, we cannot achieve a closed-loop pole at without some dynamic compensation. However, if we use the zero of a cascade lead compensator to cancel the pole at and place the pole at we get D1=zpk([-1],[-4],1); Go1=D1*G1★H; locus(Go1) which will have a closed-loop pole at the desired location when the gain is Kc =rlocfind(Gol,-2+23) KC 2022-2-11 10
2022-2-11 10 Clearly, we cannot achieve a closed-loop pole at without some dynamic compensation. However, if we use the zero of a cascade lead compensator to cancel the pole at and place the pole at we get: D1 = zpk([-1],[-4],1); Go1 = D1*G1*H; rlocus(Go1) which will have a closed-loop pole at the desired location when the gain is Kc =rlocfind(Go1,-2+2j) Kc = 8
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《自动化仪表与过程控制》课程学习资料:《自动控制理论》PPT课件 Automatic control system.ppt
- 《自动化仪表与过程控制》课程学习资料:A Comparison of Robustness_Fuzzy Logic,PID, Sliding Mode Control.pdf
- 《自动化仪表与过程控制》课程学习资料:电气设备选择·施工安装·设计应用手册(上、下册,PDF电子书).pdf
- 《自动化仪表与过程控制》课程学习资料:《电工手册》PDF电子书(共15章).pdf
- 《自动化仪表与过程控制》课程学习资料(工业控制系统设计标准)电工学重要公式实用手册(PDF电子书).pdf
- 《自动化仪表与过程控制》课程学习资料(工业控制系统设计标准)传感器通用术语 GB 7665-87.pdf
- 《自动化仪表与过程控制》课程学习资料(工业控制系统设计标准)爆炸环境用防爆用电气设备通用要求 GB 3836.1—83.doc
- 《自动化仪表与过程控制》课程学习资料(工业控制系统设计标准)自控设计常用名词术语 Common Terms and Definition for Measurement and Control System Design HG/T 20699-2000.doc
- 《自动化仪表与过程控制》课程学习资料(工业控制系统设计标准)电站阀门电动执行机构 DL/T 641—2005 代替 DL/T 641—1997.doc
- 《自动化仪表与过程控制》课程学习资料(工业控制系统设计标准)注册石油天然气工程师执业资格考试基础考试自动化仪表过程控制参考资料.doc
- 《自动化仪表与过程控制》课程学习资料(工业控制系统设计标准)工业过程控制系统用电动控制阀.doc
- 《自动化仪表与过程控制》课程学习资料:Into the Next Millennium with Bode:From Linear to Nonlinear.ppt
- 西安石油大学电子工程学院:《自动化仪表与过程控制》课程教学资源(PPT课件)第6章 单回路调节系统.pps
- 西安石油大学电子工程学院:《自动化仪表与过程控制》课程教学资源(PPT课件)第5章 调节对象特性及其测定.pps
- 西安石油大学电子工程学院:《自动化仪表与过程控制》课程教学资源(PPT课件)第4章 执行器和防爆栅 Actuator and Explosion-proof Fence(2/2).pps
- 西安石油大学电子工程学院:《自动化仪表与过程控制》课程教学资源(PPT课件)第4章 执行器和防爆栅 Actuator and Explosion-proof Fence(1/2).pps
- 西安石油大学电子工程学院:《自动化仪表与过程控制》课程教学资源(PPT课件)第3章 DCS与FCS(2/2).pps
- 西安石油大学电子工程学院:《自动化仪表与过程控制》课程教学资源(PPT课件)第3章 DCS与FCS(1/2).pps
- 西安石油大学电子工程学院:《自动化仪表与过程控制》课程教学资源(PPT课件)第7章 复杂调节系统.pps
- 西安石油大学电子工程学院:《自动化仪表与过程控制》课程教学资源(PPT课件)第2章 调节器 Controller(2/2).pps
- 《自动化仪表与过程控制》课程学习资料:Control Theory——From Classical to Quantum Optimal, Stochastic, and Robust Control.pdf
- 《自动化仪表与过程控制》课程学习资料:Essential Control Corretion.pdf
- 《自动化仪表与过程控制》课程学习资料:Feedback Control.pdf
- 《自动化仪表与过程控制》课程学习资料:Mathematical Control Theory.pdf
- 《自动化仪表与过程控制》课程学习资料:Introduction to Modern Control Theory.pdf
- 《自动化仪表与过程控制》课程学习资料:APPENDIX IV OPTIMAL CONTROL THEORY.pdf
- 《自动化仪表与过程控制》课程学习资料:Three-element drum level control.doc
- 《自动化仪表与过程控制》课程学习资料:Frequency-Domain Analysis of Control System.ppt
- 《自动化仪表与过程控制》课程学习资料:Introduction.ppt
- 《自动化仪表与过程控制》课程学习资料:Mathematical Foundation.ppt
- 《自动化仪表与过程控制》课程学习资料:PID调节(英).doc
- 《自动化仪表与过程控制》课程学习资料:The Root Locus Techniques.ppt
- 《自动化仪表与过程控制》课程学习资料:Time-Domain Analysis Of Control System.ppt
- 上海交通大学:《自动化仪表与过程控制》课程学习资料——过程控制的基本概念 Process Control.ppt
- 上海交通大学:《自动化仪表与过程控制》课程学习资料:高级过程控制 Advanced Topics Li Shaoyuan.ppt
- 西安石油大学电子工程学院:《电力系统继电保护》课程教学资源(打印版)学习要点.pdf
- 西安石油大学电子工程学院:《电力系统继电保护》课程教学资源(打印版)实验大纲.pdf
- 西安石油大学电子工程学院:《电力系统继电保护》课程教学资源(打印版)实验指导书.pdf
- 西安石油大学电子工程学院:《电力系统继电保护》课程教学资源(打印版)总复习.pdf
- 西安石油大学电子工程学院:《电力系统继电保护》课程教学资源(打印版)授课计划.pdf