《自动化仪表与过程控制》课程学习资料:Mathematical Foundation

2. Mathematical foundation
2.Mathematical Foundation

2.1 The transfer function concept From the mathematical standpoint algebraic and the dynamic behavior of a system In systems theory, the o differential or difference equations can be used to describe block diagram is often used to portray system of all types For linear systems, transfer functions and signal flow graphs are valuable tools for analysis as well as for design o If the input-output relationship of the linear system of Fig 1-2-1 is known, the characteristics of the system itself are also known The transfer function of a system is the ratio of the transformed output to the transformed input
2.1 The transfer function concept ¨ From the mathematical standpoint, algebraic and differential or difference equations can be used to describe the dynamic behavior of a system .In systems theory, the block diagram is often used to portray system of all types .For linear systems, transfer functions and signal flow graphs are valuable tools for analysis as well as for design ¨ If the input-output relationship of the linear system of Fig.1-2-1 is known, the characteristics of the system itself are also known. ¨ The transfer function of a system is the ratio of the transformed output to the transformed input

p output system p output TF(S) Finger 1-2-1 input-output relationships(a) general(b)transfer function TF(S) outputs) d inputs
system input output a TF(s) input output b ( ) ( ) ( ) ( ) ( ) r s c s inputs outputs TF s Finger 1-2-1 input-output relationships (a) general (b) transfer function (2-1)

Summarizing over the properties of a function we state 1. a transfer function is defined only for a linear system, and strictly only for time-invariant system 2. A transfer function between an input variable and output variable of a system is defined as the ratio of the Lap lace transform of the output to the input 3. All initial conditions of the system are assumed to zero 4. a transfer function is independent of input excitation
Summarizing over the properties of a function we state: 1.A transfer function is defined only for a linear system, and strictly, only for time-invariant system. 2.A transfer function between an input variable and output variable of a system is defined as the ratio of the Lap lace transform of the output to the input. 3.All initial conditions of the system are assumed to zero. 4.A transfer function is independent of input excitation

2.2 The block diagram. Figure 2-3-1 shows the block diagram of a linear feedback control system The following terminology often used in control systems is defined with preference to the block diagram R(S),r(t=reference input C(s),c(t=output signal(controlled variable) B(s, b(t=feedback signal E(S),e(t=R(s-C(s=error signal G(s=C(s)/c(s=open-loop transfer function or forward-path transfer function MS=C(S/R(S=closed-loop transfer function H(S=feedback-path transfer function G(SH(S=loop transfer function G(s) S Fig2-2-1
2.2 The block diagram. Figure 2-3-1 shows the block diagram of a linear feedback control system. The following terminology often used in control systems is defined with preference to the block diagram. R(s), r (t)=reference input. C(s), c (t)=output signal (controlled variable). B(s), b (t)=feedback signal. E(s), e (t)=R(s)-C(s)=error signal. G(s)=C(s)/c(s)=open-loop transfer function or forward-path transfer function. M(s)=C(s)/R(s)=closed-loop transfer function H(s)=feedback-path transfer function. G(s)H(s)=loop transfer function. G(s) H(s) Fig2-2-1

The closed -loop transfer function can be expressed as a function of G(s)and H(s). From Fig. 2-2-1we write C(S=G(Sc(s) (2-2) B(S=H(SC(S) 2-3) The actuating signal is written C(S=R(S-B(S) Substituting eq(2-4 )into eq(2-2)yields C(S=G(SR(S-G(SB(S) Substituting eq(2-3)into eq(2-5)gives C(S=G(SR(S)G(SH(SC(S) 2-6) Solving C(s) from the last equation the closed-loop transfer function of the system is given by M(s)=C(S)R(s)=G(s)/(1+G(s)H(s) (2-7)
The closed –loop transfer function can be expressed as a function of G(s) and H(s). From Fig.2-2-1we write: C(s)=G(s)c(s) (2-2) B(s)=H(s)C(s) (2-3) The actuating signal is written C(s)=R(s)-B(s) (2-4) Substituting Eq(2-4)into Eq(2-2)yields C(s)=G(s)R(s)-G(s)B(s) (2-5) Substituting Eq(2-3)into Eq(2-5)gives C(s)=G(s)R(s)-G(s)H(s)C(s) (2-6) Solving C(s) from the last equation ,the closed-loop transfer function of the system is given by M(s)=C(s)/R(s)=G(s)/(1+G(s)H(s)) (2-7)

2.3 Signal flow graphs Fundamental of signal flow graphs A simple signal flow graph can be used to represent an algebraic relation It is the relationship between node i to node with the transmission function A, (it is also represented by a branch) A.·X (2-8 Node A Node X Branch
2.3 Signal flow graphs ¨ Fundamental of signal flow graphs A simple signal flow graph can be used to represent an algebraic relation It is the relationship between node i to node with the transmission function A, (it is also represented by a branch). X i A ij X j (2-8)

2.3.1 Definitions Let us see the signal flow graphs
2.3.1 Definitions ¨ Let us see the signal flow graphs

Definition 1: A path is a Continuous, Unidirectional Succession of branches along which no node is passed more than once. For example, x, to x, to X, to X4 X2,Y, and back to x, and x, to x, to x4 are paths Definition 2 An Input Node Or Source is a node with only outgoing branches. For example, x is an input node Definition 3: An Output Node or sink is a node with only A
Definition 1: A path is a Continuous, Unidirectional Succession of branches along which no node is passed more than once. For example, to to to , and back to and to to are paths. X1 X 2 X 3 X 4 2 3 X , X X 2 X1 X 2 X 4 Definition 2: An Input Node Or Source is a node with only outgoing branches. For example, X1 is an input node. Definition 3: An Output Node Or Sink is a node with only incoming branches. For example, is an output node. X 4

Definition 4 A Forward Path is a path from the input node to the output node. For example, x, to X2 to X to X4and X, to X2 to x are forward paths Definition 5: A Feedback Path or feedback loop is a path which originates and terminates on the same node. For example, x2 to x, and back to X2 is a feedback path Definition 6: A Self-Loop is a feedback loop consisting of a single branch. For example, A33 is a self-loop
Definition 4: A Forward Path is a path from the input node to the output node. For example, to to to and to to are forward paths. Definition 5: A Feedback Path or feedback loop is a path which originates and terminates on the same node. For example, to , and back to is a feedback path. Definition 6: A Self-Loop is a feedback loop consisting of a single branch. For example, is a self-loop. X1 X 2 X 3 X 4 X1 X 2 X 4 X 2 X 3 X 2 A33
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《自动化仪表与过程控制》课程学习资料:Introduction.ppt
- 《自动化仪表与过程控制》课程学习资料:Frequency-Domain Analysis of Control System.ppt
- 《自动化仪表与过程控制》课程学习资料:Three-element drum level control.doc
- 《自动化仪表与过程控制》课程学习资料:APPENDIX IV OPTIMAL CONTROL THEORY.pdf
- 《自动化仪表与过程控制》课程学习资料:Introduction to Modern Control Theory.pdf
- 《自动化仪表与过程控制》课程学习资料:Mathematical Control Theory.pdf
- 《自动化仪表与过程控制》课程学习资料:Feedback Control.pdf
- 《自动化仪表与过程控制》课程学习资料:Essential Control Corretion.pdf
- 《自动化仪表与过程控制》课程学习资料:Control Theory——From Classical to Quantum Optimal, Stochastic, and Robust Control.pdf
- 《自动化仪表与过程控制》课程学习资料:Control system design.ppt
- 《自动化仪表与过程控制》课程学习资料:《自动控制理论》PPT课件 Automatic control system.ppt
- 《自动化仪表与过程控制》课程学习资料:A Comparison of Robustness_Fuzzy Logic,PID, Sliding Mode Control.pdf
- 《自动化仪表与过程控制》课程学习资料:电气设备选择·施工安装·设计应用手册(上、下册,PDF电子书).pdf
- 《自动化仪表与过程控制》课程学习资料:《电工手册》PDF电子书(共15章).pdf
- 《自动化仪表与过程控制》课程学习资料(工业控制系统设计标准)电工学重要公式实用手册(PDF电子书).pdf
- 《自动化仪表与过程控制》课程学习资料(工业控制系统设计标准)传感器通用术语 GB 7665-87.pdf
- 《自动化仪表与过程控制》课程学习资料(工业控制系统设计标准)爆炸环境用防爆用电气设备通用要求 GB 3836.1—83.doc
- 《自动化仪表与过程控制》课程学习资料(工业控制系统设计标准)自控设计常用名词术语 Common Terms and Definition for Measurement and Control System Design HG/T 20699-2000.doc
- 《自动化仪表与过程控制》课程学习资料(工业控制系统设计标准)电站阀门电动执行机构 DL/T 641—2005 代替 DL/T 641—1997.doc
- 《自动化仪表与过程控制》课程学习资料(工业控制系统设计标准)注册石油天然气工程师执业资格考试基础考试自动化仪表过程控制参考资料.doc
- 《自动化仪表与过程控制》课程学习资料:PID调节(英).doc
- 《自动化仪表与过程控制》课程学习资料:The Root Locus Techniques.ppt
- 《自动化仪表与过程控制》课程学习资料:Time-Domain Analysis Of Control System.ppt
- 上海交通大学:《自动化仪表与过程控制》课程学习资料——过程控制的基本概念 Process Control.ppt
- 上海交通大学:《自动化仪表与过程控制》课程学习资料:高级过程控制 Advanced Topics Li Shaoyuan.ppt
- 西安石油大学电子工程学院:《电力系统继电保护》课程教学资源(打印版)学习要点.pdf
- 西安石油大学电子工程学院:《电力系统继电保护》课程教学资源(打印版)实验大纲.pdf
- 西安石油大学电子工程学院:《电力系统继电保护》课程教学资源(打印版)实验指导书.pdf
- 西安石油大学电子工程学院:《电力系统继电保护》课程教学资源(打印版)总复习.pdf
- 西安石油大学电子工程学院:《电力系统继电保护》课程教学资源(打印版)授课计划.pdf
- 西安石油大学电子工程学院:《电力系统继电保护》课程教学资源(打印版)教学大纲.pdf
- 西安石油大学电子工程学院:《电力系统继电保护》课程教学资源(打印版)电力系统继电保护技术的现状与发展.pdf
- 西安石油大学电子工程学院:《电力系统继电保护》课程教学资源(打印版)电力系统继电保护现状与发展探讨.pdf
- 西安石油大学电子工程学院:《电力系统继电保护》课程教学资源(打印版)电子教案.pdf
- 西安石油大学电子工程学院:《电力系统继电保护》课程教学资源(打印版,讲义)第一章 电力系统继电保护概述.pdf
- 西安石油大学电子工程学院:《电力系统继电保护》课程教学资源(打印版,讲义)第七章 电力变压器的继电保护.pdf
- 西安石油大学电子工程学院:《电力系统继电保护》课程教学资源(打印版,讲义)第三章 电网的距离保护.pdf
- 西安石油大学电子工程学院:《电力系统继电保护》课程教学资源(打印版,讲义)第九章 母线保护.pdf
- 西安石油大学电子工程学院:《电力系统继电保护》课程教学资源(打印版,讲义)第二章 输电线路的电流电压保护.pdf
- 西安石油大学电子工程学院:《电力系统继电保护》课程教学资源(打印版,讲义)第五章 输电线路的高频保护.pdf